MakeItFrom.com
Menu (ESC)

EN 2.4642 Nickel vs. C18900 Copper

EN 2.4642 nickel belongs to the nickel alloys classification, while C18900 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 2.4642 nickel and the bottom bar is C18900 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 34
14 to 48
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 78
43
Shear Strength, MPa 450
190 to 300
Tensile Strength: Ultimate (UTS), MPa 670
260 to 500
Tensile Strength: Yield (Proof), MPa 270
67 to 390

Thermal Properties

Latent Heat of Fusion, J/g 320
210
Maximum Temperature: Mechanical, °C 1010
200
Melting Completion (Liquidus), °C 1360
1080
Melting Onset (Solidus), °C 1320
1020
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 12
130
Thermal Expansion, µm/m-K 14
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
30
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
30

Otherwise Unclassified Properties

Base Metal Price, % relative 50
31
Density, g/cm3 8.3
8.9
Embodied Carbon, kg CO2/kg material 8.2
2.7
Embodied Energy, MJ/kg 120
42
Embodied Water, L/kg 290
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
65 to 95
Resilience: Unit (Modulus of Resilience), kJ/m3 180
20 to 660
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 23
8.2 to 16
Strength to Weight: Bending, points 21
10 to 16
Thermal Diffusivity, mm2/s 3.1
38
Thermal Shock Resistance, points 18
9.3 to 18

Alloy Composition

Aluminum (Al), % 0 to 0.5
0 to 0.010
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 27 to 31
0
Copper (Cu), % 0 to 0.5
97.7 to 99.15
Iron (Fe), % 7.0 to 11
0
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0 to 0.5
0.1 to 0.3
Nickel (Ni), % 55.9 to 66
0
Phosphorus (P), % 0 to 0.020
0 to 0.050
Silicon (Si), % 0 to 0.5
0.15 to 0.4
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0.6 to 0.9
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.5