MakeItFrom.com
Menu (ESC)

EN 2.4650 Nickel vs. 2618 Aluminum

EN 2.4650 nickel belongs to the nickel alloys classification, while 2618 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 2.4650 nickel and the bottom bar is 2618 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
71
Elongation at Break, % 34
5.8
Fatigue Strength, MPa 480
110
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 80
27
Shear Strength, MPa 730
260
Tensile Strength: Ultimate (UTS), MPa 1090
420
Tensile Strength: Yield (Proof), MPa 650
350

Thermal Properties

Latent Heat of Fusion, J/g 320
390
Maximum Temperature: Mechanical, °C 1010
210
Melting Completion (Liquidus), °C 1400
640
Melting Onset (Solidus), °C 1350
550
Specific Heat Capacity, J/kg-K 450
880
Thermal Conductivity, W/m-K 12
160
Thermal Expansion, µm/m-K 11
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
37
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
110

Otherwise Unclassified Properties

Base Metal Price, % relative 80
11
Density, g/cm3 8.5
2.9
Embodied Carbon, kg CO2/kg material 10
8.3
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 360
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 320
23
Resilience: Unit (Modulus of Resilience), kJ/m3 1030
850
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 23
47
Strength to Weight: Axial, points 36
40
Strength to Weight: Bending, points 28
42
Thermal Diffusivity, mm2/s 3.1
62
Thermal Shock Resistance, points 33
19

Alloy Composition

Aluminum (Al), % 0.3 to 0.6
92.4 to 94.9
Boron (B), % 0 to 0.0050
0
Carbon (C), % 0.040 to 0.080
0
Chromium (Cr), % 19 to 21
0
Cobalt (Co), % 19 to 21
0
Copper (Cu), % 0 to 0.2
1.9 to 2.7
Iron (Fe), % 0 to 0.7
0.9 to 1.3
Magnesium (Mg), % 0
1.3 to 1.8
Manganese (Mn), % 0 to 0.6
0
Molybdenum (Mo), % 5.6 to 6.1
0
Nickel (Ni), % 46.9 to 54.2
0.9 to 1.2
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.4
0.1 to 0.25
Sulfur (S), % 0 to 0.0070
0
Titanium (Ti), % 1.9 to 2.4
0.040 to 0.1
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15