MakeItFrom.com
Menu (ESC)

EN 2.4650 Nickel vs. 3005 Aluminum

EN 2.4650 nickel belongs to the nickel alloys classification, while 3005 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 2.4650 nickel and the bottom bar is 3005 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
70
Elongation at Break, % 34
1.1 to 16
Fatigue Strength, MPa 480
53 to 100
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 80
26
Shear Strength, MPa 730
84 to 150
Tensile Strength: Ultimate (UTS), MPa 1090
140 to 270
Tensile Strength: Yield (Proof), MPa 650
51 to 240

Thermal Properties

Latent Heat of Fusion, J/g 320
400
Maximum Temperature: Mechanical, °C 1010
180
Melting Completion (Liquidus), °C 1400
660
Melting Onset (Solidus), °C 1350
640
Specific Heat Capacity, J/kg-K 450
900
Thermal Conductivity, W/m-K 12
160
Thermal Expansion, µm/m-K 11
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
42
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
140

Otherwise Unclassified Properties

Base Metal Price, % relative 80
9.5
Density, g/cm3 8.5
2.8
Embodied Carbon, kg CO2/kg material 10
8.2
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 360
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 320
2.2 to 18
Resilience: Unit (Modulus of Resilience), kJ/m3 1030
18 to 390
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
49
Strength to Weight: Axial, points 36
14 to 27
Strength to Weight: Bending, points 28
21 to 33
Thermal Diffusivity, mm2/s 3.1
64
Thermal Shock Resistance, points 33
6.0 to 12

Alloy Composition

Aluminum (Al), % 0.3 to 0.6
95.7 to 98.8
Boron (B), % 0 to 0.0050
0
Carbon (C), % 0.040 to 0.080
0
Chromium (Cr), % 19 to 21
0 to 0.1
Cobalt (Co), % 19 to 21
0
Copper (Cu), % 0 to 0.2
0 to 0.3
Iron (Fe), % 0 to 0.7
0 to 0.7
Magnesium (Mg), % 0
0.2 to 0.6
Manganese (Mn), % 0 to 0.6
1.0 to 1.5
Molybdenum (Mo), % 5.6 to 6.1
0
Nickel (Ni), % 46.9 to 54.2
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.4
0 to 0.6
Sulfur (S), % 0 to 0.0070
0
Titanium (Ti), % 1.9 to 2.4
0 to 0.1
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15