MakeItFrom.com
Menu (ESC)

EN 2.4650 Nickel vs. 413.0 Aluminum

EN 2.4650 nickel belongs to the nickel alloys classification, while 413.0 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 2.4650 nickel and the bottom bar is 413.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
73
Elongation at Break, % 34
2.5
Fatigue Strength, MPa 480
130
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 80
28
Shear Strength, MPa 730
170
Tensile Strength: Ultimate (UTS), MPa 1090
270
Tensile Strength: Yield (Proof), MPa 650
140

Thermal Properties

Latent Heat of Fusion, J/g 320
570
Maximum Temperature: Mechanical, °C 1010
170
Melting Completion (Liquidus), °C 1400
590
Melting Onset (Solidus), °C 1350
580
Specific Heat Capacity, J/kg-K 450
900
Thermal Conductivity, W/m-K 12
140
Thermal Expansion, µm/m-K 11
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
35
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
120

Otherwise Unclassified Properties

Base Metal Price, % relative 80
9.5
Density, g/cm3 8.5
2.6
Embodied Carbon, kg CO2/kg material 10
7.6
Embodied Energy, MJ/kg 140
140
Embodied Water, L/kg 360
1040

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 320
5.7
Resilience: Unit (Modulus of Resilience), kJ/m3 1030
130
Stiffness to Weight: Axial, points 13
16
Stiffness to Weight: Bending, points 23
53
Strength to Weight: Axial, points 36
29
Strength to Weight: Bending, points 28
36
Thermal Diffusivity, mm2/s 3.1
59
Thermal Shock Resistance, points 33
13

Alloy Composition

Aluminum (Al), % 0.3 to 0.6
82.2 to 89
Boron (B), % 0 to 0.0050
0
Carbon (C), % 0.040 to 0.080
0
Chromium (Cr), % 19 to 21
0
Cobalt (Co), % 19 to 21
0
Copper (Cu), % 0 to 0.2
0 to 1.0
Iron (Fe), % 0 to 0.7
0 to 2.0
Magnesium (Mg), % 0
0 to 0.1
Manganese (Mn), % 0 to 0.6
0 to 0.35
Molybdenum (Mo), % 5.6 to 6.1
0
Nickel (Ni), % 46.9 to 54.2
0 to 0.5
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.4
11 to 13
Sulfur (S), % 0 to 0.0070
0
Tin (Sn), % 0
0 to 0.15
Titanium (Ti), % 1.9 to 2.4
0
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.25