MakeItFrom.com
Menu (ESC)

EN 2.4650 Nickel vs. 5056 Aluminum

EN 2.4650 nickel belongs to the nickel alloys classification, while 5056 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 2.4650 nickel and the bottom bar is 5056 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
67
Elongation at Break, % 34
4.9 to 31
Fatigue Strength, MPa 480
140 to 200
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 80
25
Shear Strength, MPa 730
170 to 240
Tensile Strength: Ultimate (UTS), MPa 1090
290 to 460
Tensile Strength: Yield (Proof), MPa 650
150 to 410

Thermal Properties

Latent Heat of Fusion, J/g 320
400
Maximum Temperature: Mechanical, °C 1010
190
Melting Completion (Liquidus), °C 1400
640
Melting Onset (Solidus), °C 1350
570
Specific Heat Capacity, J/kg-K 450
910
Thermal Conductivity, W/m-K 12
130
Thermal Expansion, µm/m-K 11
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
29
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
99

Otherwise Unclassified Properties

Base Metal Price, % relative 80
9.5
Density, g/cm3 8.5
2.7
Embodied Carbon, kg CO2/kg material 10
9.0
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 360
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 320
12 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 1030
170 to 1220
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
51
Strength to Weight: Axial, points 36
30 to 48
Strength to Weight: Bending, points 28
36 to 50
Thermal Diffusivity, mm2/s 3.1
53
Thermal Shock Resistance, points 33
13 to 20

Alloy Composition

Aluminum (Al), % 0.3 to 0.6
93 to 95.4
Boron (B), % 0 to 0.0050
0
Carbon (C), % 0.040 to 0.080
0
Chromium (Cr), % 19 to 21
0.050 to 0.2
Cobalt (Co), % 19 to 21
0
Copper (Cu), % 0 to 0.2
0 to 0.1
Iron (Fe), % 0 to 0.7
0 to 0.4
Magnesium (Mg), % 0
4.5 to 5.6
Manganese (Mn), % 0 to 0.6
0.050 to 0.2
Molybdenum (Mo), % 5.6 to 6.1
0
Nickel (Ni), % 46.9 to 54.2
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.4
0 to 0.3
Sulfur (S), % 0 to 0.0070
0
Titanium (Ti), % 1.9 to 2.4
0
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15