MakeItFrom.com
Menu (ESC)

EN 2.4650 Nickel vs. 5059 Aluminum

EN 2.4650 nickel belongs to the nickel alloys classification, while 5059 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 2.4650 nickel and the bottom bar is 5059 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
69
Elongation at Break, % 34
11 to 25
Fatigue Strength, MPa 480
170 to 240
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 80
26
Shear Strength, MPa 730
220 to 250
Tensile Strength: Ultimate (UTS), MPa 1090
350 to 410
Tensile Strength: Yield (Proof), MPa 650
170 to 300

Thermal Properties

Latent Heat of Fusion, J/g 320
390
Maximum Temperature: Mechanical, °C 1010
210
Melting Completion (Liquidus), °C 1400
650
Melting Onset (Solidus), °C 1350
510
Specific Heat Capacity, J/kg-K 450
900
Thermal Conductivity, W/m-K 12
110
Thermal Expansion, µm/m-K 11
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
29
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
95

Otherwise Unclassified Properties

Base Metal Price, % relative 80
9.5
Density, g/cm3 8.5
2.7
Embodied Carbon, kg CO2/kg material 10
9.1
Embodied Energy, MJ/kg 140
160
Embodied Water, L/kg 360
1160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 320
42 to 75
Resilience: Unit (Modulus of Resilience), kJ/m3 1030
220 to 650
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
50
Strength to Weight: Axial, points 36
36 to 42
Strength to Weight: Bending, points 28
41 to 45
Thermal Diffusivity, mm2/s 3.1
44
Thermal Shock Resistance, points 33
16 to 18

Alloy Composition

Aluminum (Al), % 0.3 to 0.6
89.9 to 94
Boron (B), % 0 to 0.0050
0
Carbon (C), % 0.040 to 0.080
0
Chromium (Cr), % 19 to 21
0 to 0.25
Cobalt (Co), % 19 to 21
0
Copper (Cu), % 0 to 0.2
0 to 0.25
Iron (Fe), % 0 to 0.7
0 to 0.5
Magnesium (Mg), % 0
5.0 to 6.0
Manganese (Mn), % 0 to 0.6
0.6 to 1.2
Molybdenum (Mo), % 5.6 to 6.1
0
Nickel (Ni), % 46.9 to 54.2
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.4
0 to 0.45
Sulfur (S), % 0 to 0.0070
0
Titanium (Ti), % 1.9 to 2.4
0 to 0.2
Zinc (Zn), % 0
0.4 to 0.9
Zirconium (Zr), % 0
0.050 to 0.25
Residuals, % 0
0 to 0.15