MakeItFrom.com
Menu (ESC)

EN 2.4650 Nickel vs. 5252 Aluminum

EN 2.4650 nickel belongs to the nickel alloys classification, while 5252 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 2.4650 nickel and the bottom bar is 5252 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
68
Elongation at Break, % 34
4.5 to 11
Fatigue Strength, MPa 480
100 to 110
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 80
25
Shear Strength, MPa 730
140 to 160
Tensile Strength: Ultimate (UTS), MPa 1090
230 to 290
Tensile Strength: Yield (Proof), MPa 650
170 to 240

Thermal Properties

Latent Heat of Fusion, J/g 320
400
Maximum Temperature: Mechanical, °C 1010
180
Melting Completion (Liquidus), °C 1400
650
Melting Onset (Solidus), °C 1350
610
Specific Heat Capacity, J/kg-K 450
910
Thermal Conductivity, W/m-K 12
140
Thermal Expansion, µm/m-K 11
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
34
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
120

Otherwise Unclassified Properties

Base Metal Price, % relative 80
9.5
Density, g/cm3 8.5
2.7
Embodied Carbon, kg CO2/kg material 10
8.7
Embodied Energy, MJ/kg 140
160
Embodied Water, L/kg 360
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 320
12 to 23
Resilience: Unit (Modulus of Resilience), kJ/m3 1030
210 to 430
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
51
Strength to Weight: Axial, points 36
23 to 30
Strength to Weight: Bending, points 28
31 to 36
Thermal Diffusivity, mm2/s 3.1
57
Thermal Shock Resistance, points 33
10 to 13

Alloy Composition

Aluminum (Al), % 0.3 to 0.6
96.6 to 97.8
Boron (B), % 0 to 0.0050
0
Carbon (C), % 0.040 to 0.080
0
Chromium (Cr), % 19 to 21
0
Cobalt (Co), % 19 to 21
0
Copper (Cu), % 0 to 0.2
0 to 0.1
Iron (Fe), % 0 to 0.7
0 to 0.1
Magnesium (Mg), % 0
2.2 to 2.8
Manganese (Mn), % 0 to 0.6
0 to 0.1
Molybdenum (Mo), % 5.6 to 6.1
0
Nickel (Ni), % 46.9 to 54.2
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.4
0 to 0.080
Sulfur (S), % 0 to 0.0070
0
Titanium (Ti), % 1.9 to 2.4
0
Vanadium (V), % 0
0 to 0.050
Zinc (Zn), % 0
0 to 0.050
Residuals, % 0
0 to 0.1