MakeItFrom.com
Menu (ESC)

EN 2.4650 Nickel vs. 6014 Aluminum

EN 2.4650 nickel belongs to the nickel alloys classification, while 6014 aluminum belongs to the aluminum alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 2.4650 nickel and the bottom bar is 6014 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
69
Elongation at Break, % 34
9.1 to 17
Fatigue Strength, MPa 480
43 to 79
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 80
26
Shear Strength, MPa 730
96 to 150
Tensile Strength: Ultimate (UTS), MPa 1090
160 to 260
Tensile Strength: Yield (Proof), MPa 650
80 to 200

Thermal Properties

Latent Heat of Fusion, J/g 320
400
Maximum Temperature: Mechanical, °C 1010
180
Melting Completion (Liquidus), °C 1400
640
Melting Onset (Solidus), °C 1350
620
Specific Heat Capacity, J/kg-K 450
900
Thermal Conductivity, W/m-K 12
200
Thermal Expansion, µm/m-K 11
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
53
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
180

Otherwise Unclassified Properties

Base Metal Price, % relative 80
9.5
Density, g/cm3 8.5
2.7
Embodied Carbon, kg CO2/kg material 10
8.6
Embodied Energy, MJ/kg 140
160
Embodied Water, L/kg 360
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 320
22
Resilience: Unit (Modulus of Resilience), kJ/m3 1030
46 to 300
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
50
Strength to Weight: Axial, points 36
16 to 26
Strength to Weight: Bending, points 28
24 to 33
Thermal Diffusivity, mm2/s 3.1
83
Thermal Shock Resistance, points 33
7.0 to 11

Alloy Composition

Aluminum (Al), % 0.3 to 0.6
97.1 to 99.2
Boron (B), % 0 to 0.0050
0
Carbon (C), % 0.040 to 0.080
0
Chromium (Cr), % 19 to 21
0 to 0.2
Cobalt (Co), % 19 to 21
0
Copper (Cu), % 0 to 0.2
0 to 0.25
Iron (Fe), % 0 to 0.7
0 to 0.35
Magnesium (Mg), % 0
0.4 to 0.8
Manganese (Mn), % 0 to 0.6
0.050 to 0.2
Molybdenum (Mo), % 5.6 to 6.1
0
Nickel (Ni), % 46.9 to 54.2
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.4
0.3 to 0.6
Sulfur (S), % 0 to 0.0070
0
Titanium (Ti), % 1.9 to 2.4
0 to 0.1
Vanadium (V), % 0
0.050 to 0.2
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15