MakeItFrom.com
Menu (ESC)

EN 2.4650 Nickel vs. 852.0 Aluminum

EN 2.4650 nickel belongs to the nickel alloys classification, while 852.0 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 2.4650 nickel and the bottom bar is 852.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
70
Elongation at Break, % 34
3.4
Fatigue Strength, MPa 480
73
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 80
26
Shear Strength, MPa 730
130
Tensile Strength: Ultimate (UTS), MPa 1090
200
Tensile Strength: Yield (Proof), MPa 650
150

Thermal Properties

Latent Heat of Fusion, J/g 320
370
Maximum Temperature: Mechanical, °C 1010
190
Melting Completion (Liquidus), °C 1400
640
Melting Onset (Solidus), °C 1350
210
Specific Heat Capacity, J/kg-K 450
840
Thermal Conductivity, W/m-K 12
180
Thermal Expansion, µm/m-K 11
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
45
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
130

Otherwise Unclassified Properties

Base Metal Price, % relative 80
15
Density, g/cm3 8.5
3.2
Embodied Carbon, kg CO2/kg material 10
8.5
Embodied Energy, MJ/kg 140
160
Embodied Water, L/kg 360
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 320
6.2
Resilience: Unit (Modulus of Resilience), kJ/m3 1030
160
Stiffness to Weight: Axial, points 13
12
Stiffness to Weight: Bending, points 23
43
Strength to Weight: Axial, points 36
17
Strength to Weight: Bending, points 28
24
Thermal Diffusivity, mm2/s 3.1
65
Thermal Shock Resistance, points 33
8.7

Alloy Composition

Aluminum (Al), % 0.3 to 0.6
86.6 to 91.3
Boron (B), % 0 to 0.0050
0
Carbon (C), % 0.040 to 0.080
0
Chromium (Cr), % 19 to 21
0
Cobalt (Co), % 19 to 21
0
Copper (Cu), % 0 to 0.2
1.7 to 2.3
Iron (Fe), % 0 to 0.7
0 to 0.7
Magnesium (Mg), % 0
0.6 to 0.9
Manganese (Mn), % 0 to 0.6
0 to 0.1
Molybdenum (Mo), % 5.6 to 6.1
0
Nickel (Ni), % 46.9 to 54.2
0.9 to 1.5
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.4
0 to 0.4
Sulfur (S), % 0 to 0.0070
0
Tin (Sn), % 0
5.5 to 7.0
Titanium (Ti), % 1.9 to 2.4
0 to 0.2
Residuals, % 0
0 to 0.3