MakeItFrom.com
Menu (ESC)

EN 2.4650 Nickel vs. AISI 317LM Stainless Steel

EN 2.4650 nickel belongs to the nickel alloys classification, while AISI 317LM stainless steel belongs to the iron alloys. They have a modest 40% of their average alloy composition in common, which, by itself, doesn't mean much. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 2.4650 nickel and the bottom bar is AISI 317LM stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
200
Elongation at Break, % 34
46
Fatigue Strength, MPa 480
210
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 80
79
Shear Strength, MPa 730
410
Tensile Strength: Ultimate (UTS), MPa 1090
590
Tensile Strength: Yield (Proof), MPa 650
230

Thermal Properties

Latent Heat of Fusion, J/g 320
300
Maximum Temperature: Mechanical, °C 1010
300
Melting Completion (Liquidus), °C 1400
1460
Melting Onset (Solidus), °C 1350
1410
Specific Heat Capacity, J/kg-K 450
470
Thermal Conductivity, W/m-K 12
14
Thermal Expansion, µm/m-K 11
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 80
24
Density, g/cm3 8.5
8.0
Embodied Carbon, kg CO2/kg material 10
4.8
Embodied Energy, MJ/kg 140
65
Embodied Water, L/kg 360
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 320
210
Resilience: Unit (Modulus of Resilience), kJ/m3 1030
130
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
25
Strength to Weight: Axial, points 36
21
Strength to Weight: Bending, points 28
20
Thermal Diffusivity, mm2/s 3.1
3.8
Thermal Shock Resistance, points 33
13

Alloy Composition

Aluminum (Al), % 0.3 to 0.6
0
Boron (B), % 0 to 0.0050
0
Carbon (C), % 0.040 to 0.080
0 to 0.030
Chromium (Cr), % 19 to 21
18 to 20
Cobalt (Co), % 19 to 21
0
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 0 to 0.7
54.4 to 64.5
Manganese (Mn), % 0 to 0.6
0 to 2.0
Molybdenum (Mo), % 5.6 to 6.1
4.0 to 5.0
Nickel (Ni), % 46.9 to 54.2
13.5 to 17.5
Nitrogen (N), % 0
0 to 0.2
Phosphorus (P), % 0 to 0.020
0 to 0.045
Silicon (Si), % 0 to 0.4
0 to 0.75
Sulfur (S), % 0 to 0.0070
0 to 0.030
Titanium (Ti), % 1.9 to 2.4
0