MakeItFrom.com
Menu (ESC)

EN 2.4650 Nickel vs. AWS E320LR

EN 2.4650 nickel belongs to the nickel alloys classification, while AWS E320LR belongs to the iron alloys. They have 57% of their average alloy composition in common. There are 20 material properties with values for both materials. Properties with values for just one material (11, in this case) are not shown.

For each property being compared, the top bar is EN 2.4650 nickel and the bottom bar is AWS E320LR.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
200
Elongation at Break, % 34
34
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 80
77
Tensile Strength: Ultimate (UTS), MPa 1090
580

Thermal Properties

Latent Heat of Fusion, J/g 320
300
Melting Completion (Liquidus), °C 1400
1410
Melting Onset (Solidus), °C 1350
1360
Specific Heat Capacity, J/kg-K 450
460
Thermal Expansion, µm/m-K 11
14

Otherwise Unclassified Properties

Base Metal Price, % relative 80
36
Density, g/cm3 8.5
8.2
Embodied Carbon, kg CO2/kg material 10
6.2
Embodied Energy, MJ/kg 140
87
Embodied Water, L/kg 360
220

Common Calculations

Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 23
24
Strength to Weight: Axial, points 36
20
Strength to Weight: Bending, points 28
19
Thermal Shock Resistance, points 33
15

Alloy Composition

Aluminum (Al), % 0.3 to 0.6
0
Boron (B), % 0 to 0.0050
0
Carbon (C), % 0.040 to 0.080
0 to 0.030
Chromium (Cr), % 19 to 21
19 to 21
Cobalt (Co), % 19 to 21
0
Copper (Cu), % 0 to 0.2
3.0 to 4.0
Iron (Fe), % 0 to 0.7
32.7 to 42.5
Manganese (Mn), % 0 to 0.6
1.5 to 2.5
Molybdenum (Mo), % 5.6 to 6.1
2.0 to 3.0
Nickel (Ni), % 46.9 to 54.2
32 to 36
Niobium (Nb), % 0
0 to 0.4
Phosphorus (P), % 0 to 0.020
0 to 0.020
Silicon (Si), % 0 to 0.4
0 to 0.3
Sulfur (S), % 0 to 0.0070
0 to 0.015
Titanium (Ti), % 1.9 to 2.4
0