MakeItFrom.com
Menu (ESC)

EN 2.4650 Nickel vs. EN 1.3960 Stainless Steel

EN 2.4650 nickel belongs to the nickel alloys classification, while EN 1.3960 stainless steel belongs to the iron alloys. They have a modest 35% of their average alloy composition in common, which, by itself, doesn't mean much. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 2.4650 nickel and the bottom bar is EN 1.3960 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
200
Elongation at Break, % 34
34
Fatigue Strength, MPa 480
220
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 80
78
Tensile Strength: Ultimate (UTS), MPa 1090
590
Tensile Strength: Yield (Proof), MPa 650
270

Thermal Properties

Latent Heat of Fusion, J/g 320
290
Maximum Temperature: Mechanical, °C 1010
970
Melting Completion (Liquidus), °C 1400
1440
Melting Onset (Solidus), °C 1350
1400
Specific Heat Capacity, J/kg-K 450
470
Thermal Conductivity, W/m-K 12
15
Thermal Expansion, µm/m-K 11
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 80
21
Density, g/cm3 8.5
7.9
Embodied Carbon, kg CO2/kg material 10
4.1
Embodied Energy, MJ/kg 140
57
Embodied Water, L/kg 360
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 320
170
Resilience: Unit (Modulus of Resilience), kJ/m3 1030
190
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
25
Strength to Weight: Axial, points 36
21
Strength to Weight: Bending, points 28
20
Thermal Diffusivity, mm2/s 3.1
3.9
Thermal Shock Resistance, points 33
17

Alloy Composition

Aluminum (Al), % 0.3 to 0.6
0
Boron (B), % 0 to 0.0050
0
Carbon (C), % 0.040 to 0.080
0 to 0.030
Chromium (Cr), % 19 to 21
16.5 to 18.5
Cobalt (Co), % 19 to 21
0
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 0 to 0.7
60.2 to 67.9
Manganese (Mn), % 0 to 0.6
0 to 2.0
Molybdenum (Mo), % 5.6 to 6.1
2.5 to 3.0
Nickel (Ni), % 46.9 to 54.2
13 to 15
Nitrogen (N), % 0
0.15 to 0.25
Phosphorus (P), % 0 to 0.020
0 to 0.035
Silicon (Si), % 0 to 0.4
0 to 1.0
Sulfur (S), % 0 to 0.0070
0 to 0.020
Titanium (Ti), % 1.9 to 2.4
0