MakeItFrom.com
Menu (ESC)

EN 2.4650 Nickel vs. EN 1.4518 Stainless Steel

EN 2.4650 nickel belongs to the nickel alloys classification, while EN 1.4518 stainless steel belongs to the iron alloys. They have a modest 34% of their average alloy composition in common, which, by itself, doesn't mean much. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 2.4650 nickel and the bottom bar is EN 1.4518 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
200
Elongation at Break, % 34
34
Fatigue Strength, MPa 480
160
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 80
79
Tensile Strength: Ultimate (UTS), MPa 1090
490
Tensile Strength: Yield (Proof), MPa 650
210

Thermal Properties

Latent Heat of Fusion, J/g 320
300
Maximum Temperature: Mechanical, °C 1010
1000
Melting Completion (Liquidus), °C 1400
1450
Melting Onset (Solidus), °C 1350
1400
Specific Heat Capacity, J/kg-K 450
470
Thermal Conductivity, W/m-K 12
15
Thermal Expansion, µm/m-K 11
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 80
20
Density, g/cm3 8.5
7.9
Embodied Carbon, kg CO2/kg material 10
4.0
Embodied Energy, MJ/kg 140
55
Embodied Water, L/kg 360
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 320
140
Resilience: Unit (Modulus of Resilience), kJ/m3 1030
100
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
25
Strength to Weight: Axial, points 36
17
Strength to Weight: Bending, points 28
18
Thermal Diffusivity, mm2/s 3.1
4.1
Thermal Shock Resistance, points 33
14

Alloy Composition

Aluminum (Al), % 0.3 to 0.6
0
Boron (B), % 0 to 0.0050
0
Carbon (C), % 0.040 to 0.080
0 to 0.030
Chromium (Cr), % 19 to 21
18 to 20
Cobalt (Co), % 19 to 21
0
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 0 to 0.7
61.4 to 70
Manganese (Mn), % 0 to 0.6
0 to 1.5
Molybdenum (Mo), % 5.6 to 6.1
3.0 to 3.5
Nickel (Ni), % 46.9 to 54.2
9.0 to 12
Phosphorus (P), % 0 to 0.020
0 to 0.040
Silicon (Si), % 0 to 0.4
0 to 1.5
Sulfur (S), % 0 to 0.0070
0 to 0.030
Titanium (Ti), % 1.9 to 2.4
0