MakeItFrom.com
Menu (ESC)

EN 2.4650 Nickel vs. EN AC-48100 Aluminum

EN 2.4650 nickel belongs to the nickel alloys classification, while EN AC-48100 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 2.4650 nickel and the bottom bar is EN AC-48100 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
76
Elongation at Break, % 34
1.1
Fatigue Strength, MPa 480
120 to 130
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 80
29
Tensile Strength: Ultimate (UTS), MPa 1090
240 to 330
Tensile Strength: Yield (Proof), MPa 650
190 to 300

Thermal Properties

Latent Heat of Fusion, J/g 320
640
Maximum Temperature: Mechanical, °C 1010
170
Melting Completion (Liquidus), °C 1400
580
Melting Onset (Solidus), °C 1350
470
Specific Heat Capacity, J/kg-K 450
880
Thermal Conductivity, W/m-K 12
130
Thermal Expansion, µm/m-K 11
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
27
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
87

Otherwise Unclassified Properties

Base Metal Price, % relative 80
11
Density, g/cm3 8.5
2.8
Embodied Carbon, kg CO2/kg material 10
7.3
Embodied Energy, MJ/kg 140
130
Embodied Water, L/kg 360
940

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 320
2.3 to 3.6
Resilience: Unit (Modulus of Resilience), kJ/m3 1030
250 to 580
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 23
51
Strength to Weight: Axial, points 36
24 to 33
Strength to Weight: Bending, points 28
31 to 38
Thermal Diffusivity, mm2/s 3.1
55
Thermal Shock Resistance, points 33
11 to 16

Alloy Composition

Aluminum (Al), % 0.3 to 0.6
72.1 to 79.8
Boron (B), % 0 to 0.0050
0
Carbon (C), % 0.040 to 0.080
0
Chromium (Cr), % 19 to 21
0
Cobalt (Co), % 19 to 21
0
Copper (Cu), % 0 to 0.2
4.0 to 5.0
Iron (Fe), % 0 to 0.7
0 to 1.3
Magnesium (Mg), % 0
0.25 to 0.65
Manganese (Mn), % 0 to 0.6
0 to 0.5
Molybdenum (Mo), % 5.6 to 6.1
0
Nickel (Ni), % 46.9 to 54.2
0 to 0.3
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.4
16 to 18
Sulfur (S), % 0 to 0.0070
0
Tin (Sn), % 0
0 to 0.15
Titanium (Ti), % 1.9 to 2.4
0 to 0.25
Zinc (Zn), % 0
0 to 1.5
Residuals, % 0
0 to 0.25