MakeItFrom.com
Menu (ESC)

EN 2.4650 Nickel vs. C14500 Copper

EN 2.4650 nickel belongs to the nickel alloys classification, while C14500 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 2.4650 nickel and the bottom bar is C14500 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
120
Elongation at Break, % 34
12 to 50
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 80
43
Shear Strength, MPa 730
150 to 190
Tensile Strength: Ultimate (UTS), MPa 1090
220 to 330
Tensile Strength: Yield (Proof), MPa 650
69 to 260

Thermal Properties

Latent Heat of Fusion, J/g 320
210
Maximum Temperature: Mechanical, °C 1010
200
Melting Completion (Liquidus), °C 1400
1080
Melting Onset (Solidus), °C 1350
1050
Specific Heat Capacity, J/kg-K 450
390
Thermal Conductivity, W/m-K 12
360
Thermal Expansion, µm/m-K 11
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
94
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
95

Otherwise Unclassified Properties

Base Metal Price, % relative 80
33
Density, g/cm3 8.5
8.9
Embodied Carbon, kg CO2/kg material 10
2.6
Embodied Energy, MJ/kg 140
42
Embodied Water, L/kg 360
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 320
36 to 85
Resilience: Unit (Modulus of Resilience), kJ/m3 1030
21 to 300
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 23
18
Strength to Weight: Axial, points 36
6.8 to 10
Strength to Weight: Bending, points 28
9.1 to 12
Thermal Diffusivity, mm2/s 3.1
100
Thermal Shock Resistance, points 33
8.0 to 12

Alloy Composition

Aluminum (Al), % 0.3 to 0.6
0
Boron (B), % 0 to 0.0050
0
Carbon (C), % 0.040 to 0.080
0
Chromium (Cr), % 19 to 21
0
Cobalt (Co), % 19 to 21
0
Copper (Cu), % 0 to 0.2
99.2 to 99.596
Iron (Fe), % 0 to 0.7
0
Manganese (Mn), % 0 to 0.6
0
Molybdenum (Mo), % 5.6 to 6.1
0
Nickel (Ni), % 46.9 to 54.2
0
Phosphorus (P), % 0 to 0.020
0.0040 to 0.012
Silicon (Si), % 0 to 0.4
0
Sulfur (S), % 0 to 0.0070
0
Tellurium (Te), % 0
0.4 to 0.7
Titanium (Ti), % 1.9 to 2.4
0