MakeItFrom.com
Menu (ESC)

EN 2.4650 Nickel vs. C15500 Copper

EN 2.4650 nickel belongs to the nickel alloys classification, while C15500 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 2.4650 nickel and the bottom bar is C15500 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
120
Elongation at Break, % 34
3.0 to 37
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 80
43
Shear Strength, MPa 730
190 to 320
Tensile Strength: Ultimate (UTS), MPa 1090
280 to 550
Tensile Strength: Yield (Proof), MPa 650
130 to 530

Thermal Properties

Latent Heat of Fusion, J/g 320
210
Maximum Temperature: Mechanical, °C 1010
200
Melting Completion (Liquidus), °C 1400
1080
Melting Onset (Solidus), °C 1350
1080
Specific Heat Capacity, J/kg-K 450
390
Thermal Conductivity, W/m-K 12
350
Thermal Expansion, µm/m-K 11
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
90
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
91

Otherwise Unclassified Properties

Base Metal Price, % relative 80
33
Density, g/cm3 8.5
8.9
Embodied Carbon, kg CO2/kg material 10
2.7
Embodied Energy, MJ/kg 140
42
Embodied Water, L/kg 360
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 320
15 to 84
Resilience: Unit (Modulus of Resilience), kJ/m3 1030
72 to 1210
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 23
18
Strength to Weight: Axial, points 36
8.6 to 17
Strength to Weight: Bending, points 28
11 to 17
Thermal Diffusivity, mm2/s 3.1
100
Thermal Shock Resistance, points 33
9.8 to 20

Alloy Composition

Aluminum (Al), % 0.3 to 0.6
0
Boron (B), % 0 to 0.0050
0
Carbon (C), % 0.040 to 0.080
0
Chromium (Cr), % 19 to 21
0
Cobalt (Co), % 19 to 21
0
Copper (Cu), % 0 to 0.2
99.75 to 99.853
Iron (Fe), % 0 to 0.7
0
Magnesium (Mg), % 0
0.080 to 0.13
Manganese (Mn), % 0 to 0.6
0
Molybdenum (Mo), % 5.6 to 6.1
0
Nickel (Ni), % 46.9 to 54.2
0
Phosphorus (P), % 0 to 0.020
0.040 to 0.080
Silicon (Si), % 0 to 0.4
0
Silver (Ag), % 0
0.027 to 0.1
Sulfur (S), % 0 to 0.0070
0
Titanium (Ti), % 1.9 to 2.4
0
Residuals, % 0
0 to 0.2