MakeItFrom.com
Menu (ESC)

EN 2.4650 Nickel vs. C19800 Copper

EN 2.4650 nickel belongs to the nickel alloys classification, while C19800 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 2.4650 nickel and the bottom bar is C19800 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
110
Elongation at Break, % 34
9.0 to 12
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 80
43
Shear Strength, MPa 730
260 to 330
Tensile Strength: Ultimate (UTS), MPa 1090
430 to 550
Tensile Strength: Yield (Proof), MPa 650
420 to 550

Thermal Properties

Latent Heat of Fusion, J/g 320
210
Maximum Temperature: Mechanical, °C 1010
200
Melting Completion (Liquidus), °C 1400
1070
Melting Onset (Solidus), °C 1350
1050
Specific Heat Capacity, J/kg-K 450
390
Thermal Conductivity, W/m-K 12
260
Thermal Expansion, µm/m-K 11
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
61
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
62

Otherwise Unclassified Properties

Base Metal Price, % relative 80
30
Density, g/cm3 8.5
8.9
Embodied Carbon, kg CO2/kg material 10
2.8
Embodied Energy, MJ/kg 140
43
Embodied Water, L/kg 360
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 320
49 to 52
Resilience: Unit (Modulus of Resilience), kJ/m3 1030
770 to 1320
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 23
18
Strength to Weight: Axial, points 36
14 to 17
Strength to Weight: Bending, points 28
14 to 17
Thermal Diffusivity, mm2/s 3.1
75
Thermal Shock Resistance, points 33
15 to 20

Alloy Composition

Aluminum (Al), % 0.3 to 0.6
0
Boron (B), % 0 to 0.0050
0
Carbon (C), % 0.040 to 0.080
0
Chromium (Cr), % 19 to 21
0
Cobalt (Co), % 19 to 21
0
Copper (Cu), % 0 to 0.2
95.7 to 99.47
Iron (Fe), % 0 to 0.7
0.020 to 0.5
Magnesium (Mg), % 0
0.1 to 1.0
Manganese (Mn), % 0 to 0.6
0
Molybdenum (Mo), % 5.6 to 6.1
0
Nickel (Ni), % 46.9 to 54.2
0
Phosphorus (P), % 0 to 0.020
0.010 to 0.1
Silicon (Si), % 0 to 0.4
0
Sulfur (S), % 0 to 0.0070
0
Tin (Sn), % 0
0.1 to 1.0
Titanium (Ti), % 1.9 to 2.4
0
Zinc (Zn), % 0
0.3 to 1.5
Residuals, % 0
0 to 0.2