MakeItFrom.com
Menu (ESC)

EN 2.4650 Nickel vs. C48200 Brass

EN 2.4650 nickel belongs to the nickel alloys classification, while C48200 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 2.4650 nickel and the bottom bar is C48200 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
100
Elongation at Break, % 34
15 to 40
Poisson's Ratio 0.29
0.31
Shear Modulus, GPa 80
40
Shear Strength, MPa 730
260 to 300
Tensile Strength: Ultimate (UTS), MPa 1090
400 to 500
Tensile Strength: Yield (Proof), MPa 650
160 to 320

Thermal Properties

Latent Heat of Fusion, J/g 320
170
Maximum Temperature: Mechanical, °C 1010
120
Melting Completion (Liquidus), °C 1400
900
Melting Onset (Solidus), °C 1350
890
Specific Heat Capacity, J/kg-K 450
380
Thermal Conductivity, W/m-K 12
120
Thermal Expansion, µm/m-K 11
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
26
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
29

Otherwise Unclassified Properties

Base Metal Price, % relative 80
23
Density, g/cm3 8.5
8.0
Embodied Carbon, kg CO2/kg material 10
2.7
Embodied Energy, MJ/kg 140
47
Embodied Water, L/kg 360
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 320
61 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 1030
120 to 500
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 23
19
Strength to Weight: Axial, points 36
14 to 17
Strength to Weight: Bending, points 28
15 to 17
Thermal Diffusivity, mm2/s 3.1
38
Thermal Shock Resistance, points 33
13 to 16

Alloy Composition

Aluminum (Al), % 0.3 to 0.6
0
Boron (B), % 0 to 0.0050
0
Carbon (C), % 0.040 to 0.080
0
Chromium (Cr), % 19 to 21
0
Cobalt (Co), % 19 to 21
0
Copper (Cu), % 0 to 0.2
59 to 62
Iron (Fe), % 0 to 0.7
0 to 0.1
Lead (Pb), % 0
0.4 to 1.0
Manganese (Mn), % 0 to 0.6
0
Molybdenum (Mo), % 5.6 to 6.1
0
Nickel (Ni), % 46.9 to 54.2
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.4
0
Sulfur (S), % 0 to 0.0070
0
Tin (Sn), % 0
0.5 to 1.0
Titanium (Ti), % 1.9 to 2.4
0
Zinc (Zn), % 0
35.5 to 40.1
Residuals, % 0
0 to 0.4