MakeItFrom.com
Menu (ESC)

EN 2.4650 Nickel vs. C84200 Brass

EN 2.4650 nickel belongs to the nickel alloys classification, while C84200 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 2.4650 nickel and the bottom bar is C84200 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
110
Elongation at Break, % 34
15
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 80
40
Tensile Strength: Ultimate (UTS), MPa 1090
250
Tensile Strength: Yield (Proof), MPa 650
120

Thermal Properties

Latent Heat of Fusion, J/g 320
180
Maximum Temperature: Mechanical, °C 1010
150
Melting Completion (Liquidus), °C 1400
990
Melting Onset (Solidus), °C 1350
840
Specific Heat Capacity, J/kg-K 450
370
Thermal Conductivity, W/m-K 12
72
Thermal Expansion, µm/m-K 11
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
16
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
17

Otherwise Unclassified Properties

Base Metal Price, % relative 80
30
Density, g/cm3 8.5
8.5
Embodied Carbon, kg CO2/kg material 10
3.1
Embodied Energy, MJ/kg 140
51
Embodied Water, L/kg 360
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 320
31
Resilience: Unit (Modulus of Resilience), kJ/m3 1030
72
Stiffness to Weight: Axial, points 13
6.9
Stiffness to Weight: Bending, points 23
18
Strength to Weight: Axial, points 36
8.2
Strength to Weight: Bending, points 28
10
Thermal Diffusivity, mm2/s 3.1
23
Thermal Shock Resistance, points 33
9.1

Alloy Composition

Aluminum (Al), % 0.3 to 0.6
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Boron (B), % 0 to 0.0050
0
Carbon (C), % 0.040 to 0.080
0
Chromium (Cr), % 19 to 21
0
Cobalt (Co), % 19 to 21
0
Copper (Cu), % 0 to 0.2
78 to 82
Iron (Fe), % 0 to 0.7
0 to 0.4
Lead (Pb), % 0
2.0 to 3.0
Manganese (Mn), % 0 to 0.6
0
Molybdenum (Mo), % 5.6 to 6.1
0
Nickel (Ni), % 46.9 to 54.2
0 to 0.8
Phosphorus (P), % 0 to 0.020
0 to 1.5
Silicon (Si), % 0 to 0.4
0 to 0.0050
Sulfur (S), % 0 to 0.0070
0 to 0.080
Tin (Sn), % 0
4.0 to 6.0
Titanium (Ti), % 1.9 to 2.4
0
Zinc (Zn), % 0
10 to 16
Residuals, % 0
0 to 0.7