MakeItFrom.com
Menu (ESC)

EN 2.4650 Nickel vs. C94700 Bronze

EN 2.4650 nickel belongs to the nickel alloys classification, while C94700 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 2.4650 nickel and the bottom bar is C94700 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
110
Elongation at Break, % 34
7.9 to 32
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 80
43
Tensile Strength: Ultimate (UTS), MPa 1090
350 to 590
Tensile Strength: Yield (Proof), MPa 650
160 to 400

Thermal Properties

Latent Heat of Fusion, J/g 320
200
Maximum Temperature: Mechanical, °C 1010
190
Melting Completion (Liquidus), °C 1400
1030
Melting Onset (Solidus), °C 1350
900
Specific Heat Capacity, J/kg-K 450
380
Thermal Conductivity, W/m-K 12
54
Thermal Expansion, µm/m-K 11
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
12
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
12

Otherwise Unclassified Properties

Base Metal Price, % relative 80
34
Density, g/cm3 8.5
8.8
Embodied Carbon, kg CO2/kg material 10
3.5
Embodied Energy, MJ/kg 140
56
Embodied Water, L/kg 360
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 320
41 to 89
Resilience: Unit (Modulus of Resilience), kJ/m3 1030
110 to 700
Stiffness to Weight: Axial, points 13
7.3
Stiffness to Weight: Bending, points 23
18
Strength to Weight: Axial, points 36
11 to 19
Strength to Weight: Bending, points 28
13 to 18
Thermal Diffusivity, mm2/s 3.1
16
Thermal Shock Resistance, points 33
12 to 21

Alloy Composition

Aluminum (Al), % 0.3 to 0.6
0 to 0.0050
Antimony (Sb), % 0
0 to 0.15
Boron (B), % 0 to 0.0050
0
Carbon (C), % 0.040 to 0.080
0
Chromium (Cr), % 19 to 21
0
Cobalt (Co), % 19 to 21
0
Copper (Cu), % 0 to 0.2
85 to 90
Iron (Fe), % 0 to 0.7
0 to 0.25
Lead (Pb), % 0
0 to 0.1
Manganese (Mn), % 0 to 0.6
0 to 0.2
Molybdenum (Mo), % 5.6 to 6.1
0
Nickel (Ni), % 46.9 to 54.2
4.5 to 6.0
Phosphorus (P), % 0 to 0.020
0 to 0.050
Silicon (Si), % 0 to 0.4
0 to 0.0050
Sulfur (S), % 0 to 0.0070
0 to 0.050
Tin (Sn), % 0
4.5 to 6.0
Titanium (Ti), % 1.9 to 2.4
0
Zinc (Zn), % 0
1.0 to 2.5
Residuals, % 0
0 to 1.3