MakeItFrom.com
Menu (ESC)

EN 2.4650 Nickel vs. S20433 Stainless Steel

EN 2.4650 nickel belongs to the nickel alloys classification, while S20433 stainless steel belongs to the iron alloys. They have a modest 23% of their average alloy composition in common, which, by itself, doesn't mean much. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 2.4650 nickel and the bottom bar is S20433 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
200
Elongation at Break, % 34
46
Fatigue Strength, MPa 480
250
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 80
76
Shear Strength, MPa 730
440
Tensile Strength: Ultimate (UTS), MPa 1090
630
Tensile Strength: Yield (Proof), MPa 650
270

Thermal Properties

Latent Heat of Fusion, J/g 320
280
Maximum Temperature: Mechanical, °C 1010
900
Melting Completion (Liquidus), °C 1400
1400
Melting Onset (Solidus), °C 1350
1360
Specific Heat Capacity, J/kg-K 450
480
Thermal Conductivity, W/m-K 12
15
Thermal Expansion, µm/m-K 11
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 80
13
Density, g/cm3 8.5
7.7
Embodied Carbon, kg CO2/kg material 10
2.7
Embodied Energy, MJ/kg 140
39
Embodied Water, L/kg 360
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 320
230
Resilience: Unit (Modulus of Resilience), kJ/m3 1030
180
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
25
Strength to Weight: Axial, points 36
23
Strength to Weight: Bending, points 28
21
Thermal Diffusivity, mm2/s 3.1
4.0
Thermal Shock Resistance, points 33
14

Alloy Composition

Aluminum (Al), % 0.3 to 0.6
0
Boron (B), % 0 to 0.0050
0
Carbon (C), % 0.040 to 0.080
0 to 0.080
Chromium (Cr), % 19 to 21
17 to 18
Cobalt (Co), % 19 to 21
0
Copper (Cu), % 0 to 0.2
1.5 to 3.5
Iron (Fe), % 0 to 0.7
64.1 to 72.4
Manganese (Mn), % 0 to 0.6
5.5 to 7.5
Molybdenum (Mo), % 5.6 to 6.1
0
Nickel (Ni), % 46.9 to 54.2
3.5 to 5.5
Nitrogen (N), % 0
0.1 to 0.25
Phosphorus (P), % 0 to 0.020
0 to 0.045
Silicon (Si), % 0 to 0.4
0 to 1.0
Sulfur (S), % 0 to 0.0070
0 to 0.030
Titanium (Ti), % 1.9 to 2.4
0