MakeItFrom.com
Menu (ESC)

EN 2.4650 Nickel vs. S32808 Stainless Steel

EN 2.4650 nickel belongs to the nickel alloys classification, while S32808 stainless steel belongs to the iron alloys. They have a modest 29% of their average alloy composition in common, which, by itself, doesn't mean much. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 2.4650 nickel and the bottom bar is S32808 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
210
Elongation at Break, % 34
17
Fatigue Strength, MPa 480
350
Poisson's Ratio 0.29
0.27
Shear Modulus, GPa 80
81
Shear Strength, MPa 730
480
Tensile Strength: Ultimate (UTS), MPa 1090
780
Tensile Strength: Yield (Proof), MPa 650
570

Thermal Properties

Latent Heat of Fusion, J/g 320
300
Maximum Temperature: Mechanical, °C 1010
1100
Melting Completion (Liquidus), °C 1400
1470
Melting Onset (Solidus), °C 1350
1420
Specific Heat Capacity, J/kg-K 450
480
Thermal Conductivity, W/m-K 12
14
Thermal Expansion, µm/m-K 11
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 80
24
Density, g/cm3 8.5
7.9
Embodied Carbon, kg CO2/kg material 10
4.0
Embodied Energy, MJ/kg 140
57
Embodied Water, L/kg 360
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 320
120
Resilience: Unit (Modulus of Resilience), kJ/m3 1030
790
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
25
Strength to Weight: Axial, points 36
27
Strength to Weight: Bending, points 28
24
Thermal Diffusivity, mm2/s 3.1
3.8
Thermal Shock Resistance, points 33
21

Alloy Composition

Aluminum (Al), % 0.3 to 0.6
0
Boron (B), % 0 to 0.0050
0
Carbon (C), % 0.040 to 0.080
0 to 0.030
Chromium (Cr), % 19 to 21
27 to 27.9
Cobalt (Co), % 19 to 21
0
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 0 to 0.7
58.1 to 62.8
Manganese (Mn), % 0 to 0.6
0 to 1.1
Molybdenum (Mo), % 5.6 to 6.1
0.8 to 1.2
Nickel (Ni), % 46.9 to 54.2
7.0 to 8.2
Nitrogen (N), % 0
0.3 to 0.4
Phosphorus (P), % 0 to 0.020
0 to 0.030
Silicon (Si), % 0 to 0.4
0 to 0.5
Sulfur (S), % 0 to 0.0070
0 to 0.010
Titanium (Ti), % 1.9 to 2.4
0
Tungsten (W), % 0
2.1 to 2.5