MakeItFrom.com
Menu (ESC)

EN 2.4654 Nickel vs. 2011 Aluminum

EN 2.4654 nickel belongs to the nickel alloys classification, while 2011 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 2.4654 nickel and the bottom bar is 2011 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
71
Elongation at Break, % 17
8.5 to 18
Fatigue Strength, MPa 460
74 to 120
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 77
27
Shear Strength, MPa 770
190 to 250
Tensile Strength: Ultimate (UTS), MPa 1250
310 to 420
Tensile Strength: Yield (Proof), MPa 850
140 to 310

Thermal Properties

Latent Heat of Fusion, J/g 320
390
Maximum Temperature: Mechanical, °C 1000
190
Melting Completion (Liquidus), °C 1390
640
Melting Onset (Solidus), °C 1330
540
Specific Heat Capacity, J/kg-K 460
870
Thermal Conductivity, W/m-K 13
140 to 170
Thermal Expansion, µm/m-K 12
23

Otherwise Unclassified Properties

Base Metal Price, % relative 75
11
Density, g/cm3 8.4
3.1
Embodied Carbon, kg CO2/kg material 10
7.9
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 340
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
29 to 52
Resilience: Unit (Modulus of Resilience), kJ/m3 1810
140 to 680
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 23
44
Strength to Weight: Axial, points 42
27 to 37
Strength to Weight: Bending, points 31
32 to 40
Thermal Diffusivity, mm2/s 3.3
51 to 64
Thermal Shock Resistance, points 37
14 to 19

Alloy Composition

Aluminum (Al), % 1.2 to 1.6
91.3 to 94.6
Bismuth (Bi), % 0
0.2 to 0.6
Boron (B), % 0.0030 to 0.010
0
Carbon (C), % 0.020 to 0.1
0
Chromium (Cr), % 18 to 21
0
Cobalt (Co), % 12 to 15
0
Copper (Cu), % 0 to 0.1
5.0 to 6.0
Iron (Fe), % 0 to 2.0
0 to 0.7
Lead (Pb), % 0
0.2 to 0.6
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 3.5 to 5.0
0
Nickel (Ni), % 50.6 to 62.5
0
Phosphorus (P), % 0 to 0.015
0
Silicon (Si), % 0 to 0.15
0 to 0.4
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 2.8 to 3.3
0
Zinc (Zn), % 0
0 to 0.3
Zirconium (Zr), % 0.020 to 0.080
0
Residuals, % 0
0 to 0.15