MakeItFrom.com
Menu (ESC)

EN 2.4654 Nickel vs. 2024 Aluminum

EN 2.4654 nickel belongs to the nickel alloys classification, while 2024 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 2.4654 nickel and the bottom bar is 2024 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
71
Elongation at Break, % 17
4.0 to 16
Fatigue Strength, MPa 460
90 to 180
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 77
27
Shear Strength, MPa 770
130 to 320
Tensile Strength: Ultimate (UTS), MPa 1250
200 to 540
Tensile Strength: Yield (Proof), MPa 850
100 to 490

Thermal Properties

Latent Heat of Fusion, J/g 320
390
Maximum Temperature: Mechanical, °C 1000
200
Melting Completion (Liquidus), °C 1390
640
Melting Onset (Solidus), °C 1330
500
Specific Heat Capacity, J/kg-K 460
880
Thermal Conductivity, W/m-K 13
120
Thermal Expansion, µm/m-K 12
23

Otherwise Unclassified Properties

Base Metal Price, % relative 75
11
Density, g/cm3 8.4
3.0
Embodied Carbon, kg CO2/kg material 10
8.3
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 340
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
20 to 68
Resilience: Unit (Modulus of Resilience), kJ/m3 1810
70 to 1680
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 23
46
Strength to Weight: Axial, points 42
18 to 50
Strength to Weight: Bending, points 31
25 to 49
Thermal Diffusivity, mm2/s 3.3
46
Thermal Shock Resistance, points 37
8.6 to 24

Alloy Composition

Aluminum (Al), % 1.2 to 1.6
90.7 to 94.7
Boron (B), % 0.0030 to 0.010
0
Carbon (C), % 0.020 to 0.1
0
Chromium (Cr), % 18 to 21
0 to 0.1
Cobalt (Co), % 12 to 15
0
Copper (Cu), % 0 to 0.1
3.8 to 4.9
Iron (Fe), % 0 to 2.0
0 to 0.5
Magnesium (Mg), % 0
1.2 to 1.8
Manganese (Mn), % 0 to 1.0
0.3 to 0.9
Molybdenum (Mo), % 3.5 to 5.0
0
Nickel (Ni), % 50.6 to 62.5
0
Phosphorus (P), % 0 to 0.015
0
Silicon (Si), % 0 to 0.15
0 to 0.5
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 2.8 to 3.3
0 to 0.15
Zinc (Zn), % 0
0 to 0.25
Zirconium (Zr), % 0.020 to 0.080
0 to 0.2
Residuals, % 0
0 to 0.15