MakeItFrom.com
Menu (ESC)

EN 2.4654 Nickel vs. 333.0 Aluminum

EN 2.4654 nickel belongs to the nickel alloys classification, while 333.0 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 2.4654 nickel and the bottom bar is 333.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
73
Elongation at Break, % 17
1.0 to 2.0
Fatigue Strength, MPa 460
83 to 100
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 77
28
Shear Strength, MPa 770
190 to 230
Tensile Strength: Ultimate (UTS), MPa 1250
230 to 280
Tensile Strength: Yield (Proof), MPa 850
130 to 210

Thermal Properties

Latent Heat of Fusion, J/g 320
520
Maximum Temperature: Mechanical, °C 1000
170
Melting Completion (Liquidus), °C 1390
590
Melting Onset (Solidus), °C 1330
530
Specific Heat Capacity, J/kg-K 460
880
Thermal Conductivity, W/m-K 13
100 to 140
Thermal Expansion, µm/m-K 12
21

Otherwise Unclassified Properties

Base Metal Price, % relative 75
10
Density, g/cm3 8.4
2.8
Embodied Carbon, kg CO2/kg material 10
7.6
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 340
1040

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
2.1 to 4.6
Resilience: Unit (Modulus of Resilience), kJ/m3 1810
120 to 290
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
49
Strength to Weight: Axial, points 42
22 to 27
Strength to Weight: Bending, points 31
29 to 34
Thermal Diffusivity, mm2/s 3.3
42 to 57
Thermal Shock Resistance, points 37
11 to 13

Alloy Composition

Aluminum (Al), % 1.2 to 1.6
81.8 to 89
Boron (B), % 0.0030 to 0.010
0
Carbon (C), % 0.020 to 0.1
0
Chromium (Cr), % 18 to 21
0
Cobalt (Co), % 12 to 15
0
Copper (Cu), % 0 to 0.1
3.0 to 4.0
Iron (Fe), % 0 to 2.0
0 to 1.0
Magnesium (Mg), % 0
0.050 to 0.5
Manganese (Mn), % 0 to 1.0
0 to 0.5
Molybdenum (Mo), % 3.5 to 5.0
0
Nickel (Ni), % 50.6 to 62.5
0 to 0.5
Phosphorus (P), % 0 to 0.015
0
Silicon (Si), % 0 to 0.15
8.0 to 10
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 2.8 to 3.3
0 to 0.25
Zinc (Zn), % 0
0 to 1.0
Zirconium (Zr), % 0.020 to 0.080
0
Residuals, % 0
0 to 0.5