MakeItFrom.com
Menu (ESC)

EN 2.4654 Nickel vs. 7005 Aluminum

EN 2.4654 nickel belongs to the nickel alloys classification, while 7005 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 2.4654 nickel and the bottom bar is 7005 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
70
Elongation at Break, % 17
10 to 20
Fatigue Strength, MPa 460
100 to 190
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 77
26
Shear Strength, MPa 770
120 to 230
Tensile Strength: Ultimate (UTS), MPa 1250
200 to 400
Tensile Strength: Yield (Proof), MPa 850
95 to 350

Thermal Properties

Latent Heat of Fusion, J/g 320
380
Maximum Temperature: Mechanical, °C 1000
200
Melting Completion (Liquidus), °C 1390
640
Melting Onset (Solidus), °C 1330
610
Specific Heat Capacity, J/kg-K 460
880
Thermal Conductivity, W/m-K 13
140 to 170
Thermal Expansion, µm/m-K 12
23

Otherwise Unclassified Properties

Base Metal Price, % relative 75
9.5
Density, g/cm3 8.4
2.9
Embodied Carbon, kg CO2/kg material 10
8.3
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 340
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
32 to 57
Resilience: Unit (Modulus of Resilience), kJ/m3 1810
65 to 850
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 23
47
Strength to Weight: Axial, points 42
19 to 38
Strength to Weight: Bending, points 31
26 to 41
Thermal Diffusivity, mm2/s 3.3
54 to 65
Thermal Shock Resistance, points 37
8.7 to 18

Alloy Composition

Aluminum (Al), % 1.2 to 1.6
91 to 94.7
Boron (B), % 0.0030 to 0.010
0
Carbon (C), % 0.020 to 0.1
0
Chromium (Cr), % 18 to 21
0.060 to 0.2
Cobalt (Co), % 12 to 15
0
Copper (Cu), % 0 to 0.1
0 to 0.1
Iron (Fe), % 0 to 2.0
0 to 0.4
Magnesium (Mg), % 0
1.0 to 1.8
Manganese (Mn), % 0 to 1.0
0.2 to 0.7
Molybdenum (Mo), % 3.5 to 5.0
0
Nickel (Ni), % 50.6 to 62.5
0
Phosphorus (P), % 0 to 0.015
0
Silicon (Si), % 0 to 0.15
0 to 0.35
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 2.8 to 3.3
0.010 to 0.060
Zinc (Zn), % 0
4.0 to 5.0
Zirconium (Zr), % 0.020 to 0.080
0.080 to 0.2
Residuals, % 0
0 to 0.15