MakeItFrom.com
Menu (ESC)

EN 2.4654 Nickel vs. 7076 Aluminum

EN 2.4654 nickel belongs to the nickel alloys classification, while 7076 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 2.4654 nickel and the bottom bar is 7076 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
70
Elongation at Break, % 17
6.2
Fatigue Strength, MPa 460
170
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 77
27
Shear Strength, MPa 770
310
Tensile Strength: Ultimate (UTS), MPa 1250
530
Tensile Strength: Yield (Proof), MPa 850
460

Thermal Properties

Latent Heat of Fusion, J/g 320
380
Maximum Temperature: Mechanical, °C 1000
170
Melting Completion (Liquidus), °C 1390
630
Melting Onset (Solidus), °C 1330
460
Specific Heat Capacity, J/kg-K 460
860
Thermal Conductivity, W/m-K 13
140
Thermal Expansion, µm/m-K 12
24

Otherwise Unclassified Properties

Base Metal Price, % relative 75
9.5
Density, g/cm3 8.4
3.0
Embodied Carbon, kg CO2/kg material 10
8.0
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 340
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
31
Resilience: Unit (Modulus of Resilience), kJ/m3 1810
1510
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 23
45
Strength to Weight: Axial, points 42
49
Strength to Weight: Bending, points 31
48
Thermal Diffusivity, mm2/s 3.3
54
Thermal Shock Resistance, points 37
23

Alloy Composition

Aluminum (Al), % 1.2 to 1.6
86.9 to 91.2
Boron (B), % 0.0030 to 0.010
0
Carbon (C), % 0.020 to 0.1
0
Chromium (Cr), % 18 to 21
0
Cobalt (Co), % 12 to 15
0
Copper (Cu), % 0 to 0.1
0.3 to 1.0
Iron (Fe), % 0 to 2.0
0 to 0.6
Magnesium (Mg), % 0
1.2 to 2.0
Manganese (Mn), % 0 to 1.0
0.3 to 0.8
Molybdenum (Mo), % 3.5 to 5.0
0
Nickel (Ni), % 50.6 to 62.5
0
Phosphorus (P), % 0 to 0.015
0
Silicon (Si), % 0 to 0.15
0 to 0.4
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 2.8 to 3.3
0 to 0.2
Zinc (Zn), % 0
7.0 to 8.0
Zirconium (Zr), % 0.020 to 0.080
0
Residuals, % 0
0 to 0.15