MakeItFrom.com
Menu (ESC)

EN 2.4654 Nickel vs. EN AC-46100 Aluminum

EN 2.4654 nickel belongs to the nickel alloys classification, while EN AC-46100 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 2.4654 nickel and the bottom bar is EN AC-46100 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
73
Elongation at Break, % 17
1.0
Fatigue Strength, MPa 460
110
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 77
28
Tensile Strength: Ultimate (UTS), MPa 1250
270
Tensile Strength: Yield (Proof), MPa 850
160

Thermal Properties

Latent Heat of Fusion, J/g 320
550
Maximum Temperature: Mechanical, °C 1000
180
Melting Completion (Liquidus), °C 1390
600
Melting Onset (Solidus), °C 1330
540
Specific Heat Capacity, J/kg-K 460
890
Thermal Conductivity, W/m-K 13
110
Thermal Expansion, µm/m-K 12
21

Otherwise Unclassified Properties

Base Metal Price, % relative 75
10
Density, g/cm3 8.4
2.7
Embodied Carbon, kg CO2/kg material 10
7.6
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 340
1030

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
2.3
Resilience: Unit (Modulus of Resilience), kJ/m3 1810
170
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 23
51
Strength to Weight: Axial, points 42
27
Strength to Weight: Bending, points 31
34
Thermal Diffusivity, mm2/s 3.3
44
Thermal Shock Resistance, points 37
12

Alloy Composition

Aluminum (Al), % 1.2 to 1.6
80.4 to 88.5
Boron (B), % 0.0030 to 0.010
0
Carbon (C), % 0.020 to 0.1
0
Chromium (Cr), % 18 to 21
0 to 0.15
Cobalt (Co), % 12 to 15
0
Copper (Cu), % 0 to 0.1
1.5 to 2.5
Iron (Fe), % 0 to 2.0
0 to 1.1
Lead (Pb), % 0
0 to 0.25
Magnesium (Mg), % 0
0 to 0.3
Manganese (Mn), % 0 to 1.0
0 to 0.55
Molybdenum (Mo), % 3.5 to 5.0
0
Nickel (Ni), % 50.6 to 62.5
0 to 0.45
Phosphorus (P), % 0 to 0.015
0
Silicon (Si), % 0 to 0.15
10 to 12
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0 to 0.15
Titanium (Ti), % 2.8 to 3.3
0 to 0.25
Zinc (Zn), % 0
0 to 1.7
Zirconium (Zr), % 0.020 to 0.080
0
Residuals, % 0
0 to 0.25