EN 2.4654 Nickel vs. S35000 Stainless Steel
EN 2.4654 nickel belongs to the nickel alloys classification, while S35000 stainless steel belongs to the iron alloys. They have a modest 26% of their average alloy composition in common, which, by itself, doesn't mean much. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.
For each property being compared, the top bar is EN 2.4654 nickel and the bottom bar is S35000 stainless steel.
Metric UnitsUS Customary Units
Mechanical Properties
Elastic (Young's, Tensile) Modulus, GPa | 200 | |
200 |
Elongation at Break, % | 17 | |
2.3 to 14 |
Fatigue Strength, MPa | 460 | |
380 to 520 |
Poisson's Ratio | 0.29 | |
0.28 |
Shear Modulus, GPa | 77 | |
78 |
Shear Strength, MPa | 770 | |
740 to 950 |
Tensile Strength: Ultimate (UTS), MPa | 1250 | |
1300 to 1570 |
Tensile Strength: Yield (Proof), MPa | 850 | |
660 to 1160 |
Thermal Properties
Latent Heat of Fusion, J/g | 320 | |
280 |
Maximum Temperature: Mechanical, °C | 1000 | |
900 |
Melting Completion (Liquidus), °C | 1390 | |
1460 |
Melting Onset (Solidus), °C | 1330 | |
1410 |
Specific Heat Capacity, J/kg-K | 460 | |
470 |
Thermal Conductivity, W/m-K | 13 | |
16 |
Thermal Expansion, µm/m-K | 12 | |
11 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 75 | |
14 |
Density, g/cm3 | 8.4 | |
7.8 |
Embodied Carbon, kg CO2/kg material | 10 | |
3.2 |
Embodied Energy, MJ/kg | 150 | |
44 |
Embodied Water, L/kg | 340 | |
130 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 190 | |
28 to 170 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 1810 | |
1070 to 3360 |
Stiffness to Weight: Axial, points | 13 | |
14 |
Stiffness to Weight: Bending, points | 23 | |
25 |
Strength to Weight: Axial, points | 42 | |
46 to 56 |
Strength to Weight: Bending, points | 31 | |
34 to 38 |
Thermal Diffusivity, mm2/s | 3.3 | |
4.4 |
Thermal Shock Resistance, points | 37 | |
42 to 51 |
Alloy Composition
Aluminum (Al), % | 1.2 to 1.6 | |
0 |
Boron (B), % | 0.0030 to 0.010 | |
0 |
Carbon (C), % | 0.020 to 0.1 | |
0.070 to 0.11 |
Chromium (Cr), % | 18 to 21 | |
16 to 17 |
Cobalt (Co), % | 12 to 15 | |
0 |
Copper (Cu), % | 0 to 0.1 | |
0 |
Iron (Fe), % | 0 to 2.0 | |
72.7 to 76.9 |
Manganese (Mn), % | 0 to 1.0 | |
0.5 to 1.3 |
Molybdenum (Mo), % | 3.5 to 5.0 | |
2.5 to 3.2 |
Nickel (Ni), % | 50.6 to 62.5 | |
4.0 to 5.0 |
Nitrogen (N), % | 0 | |
0.070 to 0.13 |
Phosphorus (P), % | 0 to 0.015 | |
0 to 0.040 |
Silicon (Si), % | 0 to 0.15 | |
0 to 0.5 |
Sulfur (S), % | 0 to 0.015 | |
0 to 0.030 |
Titanium (Ti), % | 2.8 to 3.3 | |
0 |
Zirconium (Zr), % | 0.020 to 0.080 | |
0 |