MakeItFrom.com
Menu (ESC)

EN 2.4663 Nickel vs. C70400 Copper-nickel

EN 2.4663 nickel belongs to the nickel alloys classification, while C70400 copper-nickel belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 2.4663 nickel and the bottom bar is C70400 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
120
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 81
45
Tensile Strength: Ultimate (UTS), MPa 780
300 to 310
Tensile Strength: Yield (Proof), MPa 310
95 to 230

Thermal Properties

Latent Heat of Fusion, J/g 320
210
Maximum Temperature: Mechanical, °C 1010
210
Melting Completion (Liquidus), °C 1430
1120
Melting Onset (Solidus), °C 1380
1060
Specific Heat Capacity, J/kg-K 450
390
Thermal Conductivity, W/m-K 13
64
Thermal Expansion, µm/m-K 12
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
14
Electrical Conductivity: Equal Weight (Specific), % IACS 1.5
14

Otherwise Unclassified Properties

Base Metal Price, % relative 75
32
Density, g/cm3 8.6
8.9
Embodied Carbon, kg CO2/kg material 11
3.0
Embodied Energy, MJ/kg 140
47
Embodied Water, L/kg 350
300

Common Calculations

Resilience: Unit (Modulus of Resilience), kJ/m3 230
38 to 220
Stiffness to Weight: Axial, points 14
7.5
Stiffness to Weight: Bending, points 23
19
Strength to Weight: Axial, points 25
9.3 to 9.8
Strength to Weight: Bending, points 22
11 to 12
Thermal Diffusivity, mm2/s 3.5
18
Thermal Shock Resistance, points 22
10 to 11

Alloy Composition

Aluminum (Al), % 0.7 to 1.4
0
Boron (B), % 0 to 0.0060
0
Carbon (C), % 0.050 to 0.1
0
Chromium (Cr), % 20 to 23
0
Cobalt (Co), % 11 to 14
0
Copper (Cu), % 0 to 0.5
89.8 to 93.6
Iron (Fe), % 0 to 2.0
1.3 to 1.7
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 0.2
0.3 to 0.8
Molybdenum (Mo), % 8.5 to 10
0
Nickel (Ni), % 48 to 59.6
4.8 to 6.2
Phosphorus (P), % 0 to 0.010
0
Silicon (Si), % 0 to 0.2
0
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0.2 to 0.6
0
Zinc (Zn), % 0
0 to 1.0
Residuals, % 0
0 to 0.5