MakeItFrom.com
Menu (ESC)

EN 2.4663 Nickel vs. C84500 Brass

EN 2.4663 nickel belongs to the nickel alloys classification, while C84500 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 2.4663 nickel and the bottom bar is C84500 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
100
Elongation at Break, % 40
28
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 81
39
Tensile Strength: Ultimate (UTS), MPa 780
240
Tensile Strength: Yield (Proof), MPa 310
97

Thermal Properties

Latent Heat of Fusion, J/g 320
180
Maximum Temperature: Mechanical, °C 1010
150
Melting Completion (Liquidus), °C 1430
980
Melting Onset (Solidus), °C 1380
840
Specific Heat Capacity, J/kg-K 450
360
Thermal Conductivity, W/m-K 13
72
Thermal Expansion, µm/m-K 12
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
16
Electrical Conductivity: Equal Weight (Specific), % IACS 1.5
17

Otherwise Unclassified Properties

Base Metal Price, % relative 75
28
Density, g/cm3 8.6
8.7
Embodied Carbon, kg CO2/kg material 11
2.9
Embodied Energy, MJ/kg 140
47
Embodied Water, L/kg 350
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 250
54
Resilience: Unit (Modulus of Resilience), kJ/m3 230
45
Stiffness to Weight: Axial, points 14
6.6
Stiffness to Weight: Bending, points 23
18
Strength to Weight: Axial, points 25
7.7
Strength to Weight: Bending, points 22
9.8
Thermal Diffusivity, mm2/s 3.5
23
Thermal Shock Resistance, points 22
8.6

Alloy Composition

Aluminum (Al), % 0.7 to 1.4
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Boron (B), % 0 to 0.0060
0
Carbon (C), % 0.050 to 0.1
0
Chromium (Cr), % 20 to 23
0
Cobalt (Co), % 11 to 14
0
Copper (Cu), % 0 to 0.5
77 to 79
Iron (Fe), % 0 to 2.0
0 to 0.4
Lead (Pb), % 0
6.0 to 7.5
Manganese (Mn), % 0 to 0.2
0
Molybdenum (Mo), % 8.5 to 10
0
Nickel (Ni), % 48 to 59.6
0 to 1.0
Phosphorus (P), % 0 to 0.010
0 to 0.020
Silicon (Si), % 0 to 0.2
0 to 0.0050
Sulfur (S), % 0 to 0.010
0 to 0.080
Tin (Sn), % 0
2.0 to 4.0
Titanium (Ti), % 0.2 to 0.6
0
Zinc (Zn), % 0
10 to 14
Residuals, % 0
0 to 0.7