MakeItFrom.com
Menu (ESC)

EN 2.4663 Nickel vs. C85400 Brass

EN 2.4663 nickel belongs to the nickel alloys classification, while C85400 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 2.4663 nickel and the bottom bar is C85400 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
100
Elongation at Break, % 40
23
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 81
40
Tensile Strength: Ultimate (UTS), MPa 780
220
Tensile Strength: Yield (Proof), MPa 310
85

Thermal Properties

Latent Heat of Fusion, J/g 320
180
Maximum Temperature: Mechanical, °C 1010
130
Melting Completion (Liquidus), °C 1430
940
Melting Onset (Solidus), °C 1380
940
Specific Heat Capacity, J/kg-K 450
380
Thermal Conductivity, W/m-K 13
89
Thermal Expansion, µm/m-K 12
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
20
Electrical Conductivity: Equal Weight (Specific), % IACS 1.5
22

Otherwise Unclassified Properties

Base Metal Price, % relative 75
25
Density, g/cm3 8.6
8.3
Embodied Carbon, kg CO2/kg material 11
2.8
Embodied Energy, MJ/kg 140
46
Embodied Water, L/kg 350
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 250
40
Resilience: Unit (Modulus of Resilience), kJ/m3 230
35
Stiffness to Weight: Axial, points 14
7.0
Stiffness to Weight: Bending, points 23
19
Strength to Weight: Axial, points 25
7.5
Strength to Weight: Bending, points 22
9.9
Thermal Diffusivity, mm2/s 3.5
28
Thermal Shock Resistance, points 22
7.6

Alloy Composition

Aluminum (Al), % 0.7 to 1.4
0 to 0.35
Boron (B), % 0 to 0.0060
0
Carbon (C), % 0.050 to 0.1
0
Chromium (Cr), % 20 to 23
0
Cobalt (Co), % 11 to 14
0
Copper (Cu), % 0 to 0.5
65 to 70
Iron (Fe), % 0 to 2.0
0 to 0.7
Lead (Pb), % 0
1.5 to 3.8
Manganese (Mn), % 0 to 0.2
0
Molybdenum (Mo), % 8.5 to 10
0
Nickel (Ni), % 48 to 59.6
0 to 1.0
Phosphorus (P), % 0 to 0.010
0
Silicon (Si), % 0 to 0.2
0 to 0.050
Sulfur (S), % 0 to 0.010
0
Tin (Sn), % 0
0.5 to 1.5
Titanium (Ti), % 0.2 to 0.6
0
Zinc (Zn), % 0
24 to 32
Residuals, % 0
0 to 1.1