MakeItFrom.com
Menu (ESC)

EN 2.4665 Nickel vs. 5086 Aluminum

EN 2.4665 nickel belongs to the nickel alloys classification, while 5086 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 2.4665 nickel and the bottom bar is 5086 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
68
Elongation at Break, % 34
1.7 to 20
Fatigue Strength, MPa 220
88 to 180
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 81
26
Shear Strength, MPa 520
160 to 230
Tensile Strength: Ultimate (UTS), MPa 790
270 to 390
Tensile Strength: Yield (Proof), MPa 300
110 to 320

Thermal Properties

Latent Heat of Fusion, J/g 320
400
Maximum Temperature: Mechanical, °C 990
190
Melting Completion (Liquidus), °C 1460
640
Melting Onset (Solidus), °C 1410
590
Specific Heat Capacity, J/kg-K 450
900
Thermal Conductivity, W/m-K 12
130
Thermal Expansion, µm/m-K 14
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
31
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
100

Otherwise Unclassified Properties

Base Metal Price, % relative 55
9.5
Density, g/cm3 8.4
2.7
Embodied Carbon, kg CO2/kg material 9.2
8.8
Embodied Energy, MJ/kg 130
150
Embodied Water, L/kg 270
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 210
5.8 to 42
Resilience: Unit (Modulus of Resilience), kJ/m3 220
86 to 770
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 23
50
Strength to Weight: Axial, points 26
28 to 40
Strength to Weight: Bending, points 22
34 to 44
Thermal Diffusivity, mm2/s 3.2
52
Thermal Shock Resistance, points 20
12 to 17

Alloy Composition

Aluminum (Al), % 0 to 0.5
93 to 96.3
Boron (B), % 0 to 0.010
0
Carbon (C), % 0.050 to 0.15
0
Chromium (Cr), % 20.5 to 23
0.050 to 0.25
Cobalt (Co), % 0.5 to 2.5
0
Copper (Cu), % 0 to 0.5
0 to 0.1
Iron (Fe), % 17 to 20
0 to 0.5
Magnesium (Mg), % 0
3.5 to 4.5
Manganese (Mn), % 0 to 1.0
0.2 to 0.7
Molybdenum (Mo), % 8.0 to 10
0
Nickel (Ni), % 40.3 to 53.8
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 1.0
0 to 0.4
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
0 to 0.15
Tungsten (W), % 0.2 to 1.0
0
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15