MakeItFrom.com
Menu (ESC)

EN 2.4665 Nickel vs. 6110A Aluminum

EN 2.4665 nickel belongs to the nickel alloys classification, while 6110A aluminum belongs to the aluminum alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 2.4665 nickel and the bottom bar is 6110A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
70
Elongation at Break, % 34
11 to 18
Fatigue Strength, MPa 220
140 to 210
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 81
26
Shear Strength, MPa 520
220 to 280
Tensile Strength: Ultimate (UTS), MPa 790
360 to 470
Tensile Strength: Yield (Proof), MPa 300
250 to 430

Thermal Properties

Latent Heat of Fusion, J/g 320
410
Maximum Temperature: Mechanical, °C 990
190
Melting Completion (Liquidus), °C 1460
650
Melting Onset (Solidus), °C 1410
600
Specific Heat Capacity, J/kg-K 450
900
Thermal Conductivity, W/m-K 12
160
Thermal Expansion, µm/m-K 14
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
42
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
140

Otherwise Unclassified Properties

Base Metal Price, % relative 55
9.5
Density, g/cm3 8.4
2.8
Embodied Carbon, kg CO2/kg material 9.2
8.4
Embodied Energy, MJ/kg 130
150
Embodied Water, L/kg 270
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 210
47 to 58
Resilience: Unit (Modulus of Resilience), kJ/m3 220
450 to 1300
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 23
50
Strength to Weight: Axial, points 26
36 to 47
Strength to Weight: Bending, points 22
41 to 48
Thermal Diffusivity, mm2/s 3.2
65
Thermal Shock Resistance, points 20
16 to 21

Alloy Composition

Aluminum (Al), % 0 to 0.5
94.8 to 98
Boron (B), % 0 to 0.010
0
Carbon (C), % 0.050 to 0.15
0
Chromium (Cr), % 20.5 to 23
0.050 to 0.25
Cobalt (Co), % 0.5 to 2.5
0
Copper (Cu), % 0 to 0.5
0.3 to 0.8
Iron (Fe), % 17 to 20
0 to 0.5
Magnesium (Mg), % 0
0.7 to 1.1
Manganese (Mn), % 0 to 1.0
0.3 to 0.9
Molybdenum (Mo), % 8.0 to 10
0
Nickel (Ni), % 40.3 to 53.8
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 1.0
0.7 to 1.1
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
0 to 0.2
Tungsten (W), % 0.2 to 1.0
0
Zinc (Zn), % 0
0 to 0.2
Zirconium (Zr), % 0
0 to 0.2
Residuals, % 0
0 to 0.15