MakeItFrom.com
Menu (ESC)

EN 2.4665 Nickel vs. 6351 Aluminum

EN 2.4665 nickel belongs to the nickel alloys classification, while 6351 aluminum belongs to the aluminum alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 2.4665 nickel and the bottom bar is 6351 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
69
Elongation at Break, % 34
7.8 to 18
Fatigue Strength, MPa 220
79 to 130
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 81
26
Shear Strength, MPa 520
84 to 200
Tensile Strength: Ultimate (UTS), MPa 790
140 to 310
Tensile Strength: Yield (Proof), MPa 300
95 to 270

Thermal Properties

Latent Heat of Fusion, J/g 320
410
Maximum Temperature: Mechanical, °C 990
160
Melting Completion (Liquidus), °C 1460
650
Melting Onset (Solidus), °C 1410
570
Specific Heat Capacity, J/kg-K 450
900
Thermal Conductivity, W/m-K 12
180
Thermal Expansion, µm/m-K 14
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
46
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
150

Otherwise Unclassified Properties

Base Metal Price, % relative 55
9.5
Density, g/cm3 8.4
2.7
Embodied Carbon, kg CO2/kg material 9.2
8.3
Embodied Energy, MJ/kg 130
150
Embodied Water, L/kg 270
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 210
20 to 38
Resilience: Unit (Modulus of Resilience), kJ/m3 220
65 to 540
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 23
50
Strength to Weight: Axial, points 26
14 to 32
Strength to Weight: Bending, points 22
22 to 38
Thermal Diffusivity, mm2/s 3.2
72
Thermal Shock Resistance, points 20
6.1 to 14

Alloy Composition

Aluminum (Al), % 0 to 0.5
96 to 98.5
Boron (B), % 0 to 0.010
0
Carbon (C), % 0.050 to 0.15
0
Chromium (Cr), % 20.5 to 23
0
Cobalt (Co), % 0.5 to 2.5
0
Copper (Cu), % 0 to 0.5
0 to 0.1
Iron (Fe), % 17 to 20
0 to 0.5
Magnesium (Mg), % 0
0.4 to 0.8
Manganese (Mn), % 0 to 1.0
0.4 to 0.8
Molybdenum (Mo), % 8.0 to 10
0
Nickel (Ni), % 40.3 to 53.8
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 1.0
0.7 to 1.3
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
0 to 0.2
Tungsten (W), % 0.2 to 1.0
0
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15