MakeItFrom.com
Menu (ESC)

EN 2.4665 Nickel vs. 7475 Aluminum

EN 2.4665 nickel belongs to the nickel alloys classification, while 7475 aluminum belongs to the aluminum alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 2.4665 nickel and the bottom bar is 7475 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
70
Elongation at Break, % 34
10 to 12
Fatigue Strength, MPa 220
190 to 210
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 81
26
Shear Strength, MPa 520
320 to 350
Tensile Strength: Ultimate (UTS), MPa 790
530 to 590
Tensile Strength: Yield (Proof), MPa 300
440 to 520

Thermal Properties

Latent Heat of Fusion, J/g 320
380
Maximum Temperature: Mechanical, °C 990
180
Melting Completion (Liquidus), °C 1460
640
Melting Onset (Solidus), °C 1410
480
Specific Heat Capacity, J/kg-K 450
870
Thermal Conductivity, W/m-K 12
140 to 160
Thermal Expansion, µm/m-K 14
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
33 to 42
Electrical Conductivity: Equal Weight (Specific), % IACS 1.6
98 to 120

Otherwise Unclassified Properties

Base Metal Price, % relative 55
10
Density, g/cm3 8.4
3.0
Embodied Carbon, kg CO2/kg material 9.2
8.2
Embodied Energy, MJ/kg 130
150
Embodied Water, L/kg 270
1130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 210
53 to 68
Resilience: Unit (Modulus of Resilience), kJ/m3 220
1390 to 1920
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 23
46
Strength to Weight: Axial, points 26
49 to 55
Strength to Weight: Bending, points 22
48 to 52
Thermal Diffusivity, mm2/s 3.2
53 to 63
Thermal Shock Resistance, points 20
23 to 26

Alloy Composition

Aluminum (Al), % 0 to 0.5
88.6 to 91.6
Boron (B), % 0 to 0.010
0
Carbon (C), % 0.050 to 0.15
0
Chromium (Cr), % 20.5 to 23
0.18 to 0.25
Cobalt (Co), % 0.5 to 2.5
0
Copper (Cu), % 0 to 0.5
1.2 to 1.9
Iron (Fe), % 17 to 20
0 to 0.12
Magnesium (Mg), % 0
1.9 to 2.6
Manganese (Mn), % 0 to 1.0
0 to 0.060
Molybdenum (Mo), % 8.0 to 10
0
Nickel (Ni), % 40.3 to 53.8
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 1.0
0 to 0.1
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
0 to 0.060
Tungsten (W), % 0.2 to 1.0
0
Zinc (Zn), % 0
5.1 to 6.2
Residuals, % 0
0 to 0.15