MakeItFrom.com
Menu (ESC)

EN 2.4668 Nickel vs. 206.0 Aluminum

EN 2.4668 nickel belongs to the nickel alloys classification, while 206.0 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 2.4668 nickel and the bottom bar is 206.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
71
Elongation at Break, % 14
8.4 to 12
Fatigue Strength, MPa 590
88 to 210
Impact Strength: V-Notched Charpy, J 14
9.5
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 75
27
Shear Strength, MPa 840
260
Tensile Strength: Ultimate (UTS), MPa 1390
330 to 440
Tensile Strength: Yield (Proof), MPa 1160
190 to 350

Thermal Properties

Latent Heat of Fusion, J/g 310
390
Maximum Temperature: Mechanical, °C 980
170
Melting Completion (Liquidus), °C 1460
650
Melting Onset (Solidus), °C 1410
570
Specific Heat Capacity, J/kg-K 450
880
Thermal Conductivity, W/m-K 13
120
Thermal Expansion, µm/m-K 13
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
33
Electrical Conductivity: Equal Weight (Specific), % IACS 1.5
99

Otherwise Unclassified Properties

Base Metal Price, % relative 75
11
Density, g/cm3 8.3
3.0
Embodied Carbon, kg CO2/kg material 13
8.0
Embodied Energy, MJ/kg 190
150
Embodied Water, L/kg 250
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
24 to 49
Resilience: Unit (Modulus of Resilience), kJ/m3 3490
270 to 840
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 23
46
Strength to Weight: Axial, points 46
30 to 40
Strength to Weight: Bending, points 33
35 to 42
Thermal Diffusivity, mm2/s 3.5
46
Thermal Shock Resistance, points 40
17 to 23

Alloy Composition

Aluminum (Al), % 0.3 to 0.7
93.3 to 95.3
Boron (B), % 0.0020 to 0.0060
0
Carbon (C), % 0.020 to 0.080
0
Chromium (Cr), % 17 to 21
0
Cobalt (Co), % 0 to 1.0
0
Copper (Cu), % 0 to 0.3
4.2 to 5.0
Iron (Fe), % 11.2 to 24.6
0 to 0.15
Magnesium (Mg), % 0
0.15 to 0.35
Manganese (Mn), % 0 to 0.35
0.2 to 0.5
Molybdenum (Mo), % 2.8 to 3.3
0
Nickel (Ni), % 50 to 55
0 to 0.050
Niobium (Nb), % 4.7 to 5.5
0
Phosphorus (P), % 0 to 0.015
0
Silicon (Si), % 0 to 0.35
0 to 0.1
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0.6 to 1.2
0.15 to 0.3
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15