MakeItFrom.com
Menu (ESC)

EN 2.4668 Nickel vs. 6063A Aluminum

EN 2.4668 nickel belongs to the nickel alloys classification, while 6063A aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 2.4668 nickel and the bottom bar is 6063A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
68
Elongation at Break, % 14
6.7 to 18
Fatigue Strength, MPa 590
53 to 80
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 75
26
Shear Strength, MPa 840
78 to 150
Tensile Strength: Ultimate (UTS), MPa 1390
130 to 260
Tensile Strength: Yield (Proof), MPa 1160
55 to 200

Thermal Properties

Latent Heat of Fusion, J/g 310
400
Maximum Temperature: Mechanical, °C 980
160
Melting Completion (Liquidus), °C 1460
640
Melting Onset (Solidus), °C 1410
620
Specific Heat Capacity, J/kg-K 450
900
Thermal Conductivity, W/m-K 13
200
Thermal Expansion, µm/m-K 13
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
49 to 54
Electrical Conductivity: Equal Weight (Specific), % IACS 1.5
160 to 180

Otherwise Unclassified Properties

Base Metal Price, % relative 75
9.5
Density, g/cm3 8.3
2.7
Embodied Carbon, kg CO2/kg material 13
8.3
Embodied Energy, MJ/kg 190
150
Embodied Water, L/kg 250
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
13 to 21
Resilience: Unit (Modulus of Resilience), kJ/m3 3490
22 to 280
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
50
Strength to Weight: Axial, points 46
13 to 26
Strength to Weight: Bending, points 33
21 to 33
Thermal Diffusivity, mm2/s 3.5
83
Thermal Shock Resistance, points 40
5.6 to 11

Alloy Composition

Aluminum (Al), % 0.3 to 0.7
97.5 to 99
Boron (B), % 0.0020 to 0.0060
0
Carbon (C), % 0.020 to 0.080
0
Chromium (Cr), % 17 to 21
0 to 0.050
Cobalt (Co), % 0 to 1.0
0
Copper (Cu), % 0 to 0.3
0 to 0.1
Iron (Fe), % 11.2 to 24.6
0.15 to 0.35
Magnesium (Mg), % 0
0.6 to 0.9
Manganese (Mn), % 0 to 0.35
0 to 0.15
Molybdenum (Mo), % 2.8 to 3.3
0
Nickel (Ni), % 50 to 55
0
Niobium (Nb), % 4.7 to 5.5
0
Phosphorus (P), % 0 to 0.015
0
Silicon (Si), % 0 to 0.35
0.3 to 0.6
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0.6 to 1.2
0 to 0.1
Zinc (Zn), % 0
0 to 0.15
Residuals, % 0
0 to 0.15