MakeItFrom.com
Menu (ESC)

EN 2.4668 Nickel vs. 7021 Aluminum

EN 2.4668 nickel belongs to the nickel alloys classification, while 7021 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 2.4668 nickel and the bottom bar is 7021 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
69
Elongation at Break, % 14
9.4
Fatigue Strength, MPa 590
150
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 75
26
Shear Strength, MPa 840
270
Tensile Strength: Ultimate (UTS), MPa 1390
460
Tensile Strength: Yield (Proof), MPa 1160
390

Thermal Properties

Latent Heat of Fusion, J/g 310
380
Maximum Temperature: Mechanical, °C 980
200
Melting Completion (Liquidus), °C 1460
630
Melting Onset (Solidus), °C 1410
510
Specific Heat Capacity, J/kg-K 450
870
Thermal Conductivity, W/m-K 13
150
Thermal Expansion, µm/m-K 13
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
38
Electrical Conductivity: Equal Weight (Specific), % IACS 1.5
120

Otherwise Unclassified Properties

Base Metal Price, % relative 75
9.5
Density, g/cm3 8.3
2.9
Embodied Carbon, kg CO2/kg material 13
8.3
Embodied Energy, MJ/kg 190
150
Embodied Water, L/kg 250
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
41
Resilience: Unit (Modulus of Resilience), kJ/m3 3490
1110
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 23
47
Strength to Weight: Axial, points 46
44
Strength to Weight: Bending, points 33
45
Thermal Diffusivity, mm2/s 3.5
59
Thermal Shock Resistance, points 40
20

Alloy Composition

Aluminum (Al), % 0.3 to 0.7
90.7 to 93.7
Boron (B), % 0.0020 to 0.0060
0
Carbon (C), % 0.020 to 0.080
0
Chromium (Cr), % 17 to 21
0 to 0.050
Cobalt (Co), % 0 to 1.0
0
Copper (Cu), % 0 to 0.3
0 to 0.25
Iron (Fe), % 11.2 to 24.6
0 to 0.4
Magnesium (Mg), % 0
1.2 to 1.8
Manganese (Mn), % 0 to 0.35
0 to 0.1
Molybdenum (Mo), % 2.8 to 3.3
0
Nickel (Ni), % 50 to 55
0
Niobium (Nb), % 4.7 to 5.5
0
Phosphorus (P), % 0 to 0.015
0
Silicon (Si), % 0 to 0.35
0 to 0.25
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0.6 to 1.2
0 to 0.1
Zinc (Zn), % 0
5.0 to 6.0
Zirconium (Zr), % 0
0.080 to 0.18
Residuals, % 0
0 to 0.15