MakeItFrom.com
Menu (ESC)

EN 2.4668 Nickel vs. AISI 403 Stainless Steel

EN 2.4668 nickel belongs to the nickel alloys classification, while AISI 403 stainless steel belongs to the iron alloys. They have a modest 31% of their average alloy composition in common, which, by itself, doesn't mean much. There are 30 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is EN 2.4668 nickel and the bottom bar is AISI 403 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 14
16 to 25
Fatigue Strength, MPa 590
200 to 340
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 75
76
Shear Strength, MPa 840
340 to 480
Tensile Strength: Ultimate (UTS), MPa 1390
530 to 780
Tensile Strength: Yield (Proof), MPa 1160
280 to 570

Thermal Properties

Latent Heat of Fusion, J/g 310
270
Maximum Temperature: Mechanical, °C 980
740
Melting Completion (Liquidus), °C 1460
1450
Melting Onset (Solidus), °C 1410
1400
Specific Heat Capacity, J/kg-K 450
480
Thermal Conductivity, W/m-K 13
28
Thermal Expansion, µm/m-K 13
9.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 1.5
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 75
6.5
Density, g/cm3 8.3
7.8
Embodied Carbon, kg CO2/kg material 13
1.9
Embodied Energy, MJ/kg 190
27
Embodied Water, L/kg 250
99

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
110 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 3490
210 to 840
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
25
Strength to Weight: Axial, points 46
19 to 28
Strength to Weight: Bending, points 33
19 to 24
Thermal Diffusivity, mm2/s 3.5
7.6
Thermal Shock Resistance, points 40
20 to 29

Alloy Composition

Aluminum (Al), % 0.3 to 0.7
0
Boron (B), % 0.0020 to 0.0060
0
Carbon (C), % 0.020 to 0.080
0 to 0.15
Chromium (Cr), % 17 to 21
11.5 to 13
Cobalt (Co), % 0 to 1.0
0
Copper (Cu), % 0 to 0.3
0
Iron (Fe), % 11.2 to 24.6
84.7 to 88.5
Manganese (Mn), % 0 to 0.35
0 to 1.0
Molybdenum (Mo), % 2.8 to 3.3
0
Nickel (Ni), % 50 to 55
0 to 0.6
Niobium (Nb), % 4.7 to 5.5
0
Phosphorus (P), % 0 to 0.015
0 to 0.040
Silicon (Si), % 0 to 0.35
0 to 0.5
Sulfur (S), % 0 to 0.015
0 to 0.030
Titanium (Ti), % 0.6 to 1.2
0