MakeItFrom.com
Menu (ESC)

EN 2.4668 Nickel vs. EN 1.5638 Steel

EN 2.4668 nickel belongs to the nickel alloys classification, while EN 1.5638 steel belongs to the iron alloys. They have a modest 22% of their average alloy composition in common, which, by itself, doesn't mean much. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 2.4668 nickel and the bottom bar is EN 1.5638 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 14
23
Fatigue Strength, MPa 590
290
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 75
73
Tensile Strength: Ultimate (UTS), MPa 1390
580
Tensile Strength: Yield (Proof), MPa 1160
410

Thermal Properties

Latent Heat of Fusion, J/g 310
250
Maximum Temperature: Mechanical, °C 980
410
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1410
1420
Specific Heat Capacity, J/kg-K 450
470
Thermal Conductivity, W/m-K 13
52
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 1.5
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 75
4.0
Density, g/cm3 8.3
7.9
Embodied Carbon, kg CO2/kg material 13
1.7
Embodied Energy, MJ/kg 190
23
Embodied Water, L/kg 250
52

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
120
Resilience: Unit (Modulus of Resilience), kJ/m3 3490
450
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 23
24
Strength to Weight: Axial, points 46
20
Strength to Weight: Bending, points 33
20
Thermal Diffusivity, mm2/s 3.5
14
Thermal Shock Resistance, points 40
17

Alloy Composition

Aluminum (Al), % 0.3 to 0.7
0
Boron (B), % 0.0020 to 0.0060
0
Carbon (C), % 0.020 to 0.080
0.060 to 0.12
Chromium (Cr), % 17 to 21
0
Cobalt (Co), % 0 to 1.0
0
Copper (Cu), % 0 to 0.3
0
Iron (Fe), % 11.2 to 24.6
94.4 to 96.4
Manganese (Mn), % 0 to 0.35
0.5 to 0.8
Molybdenum (Mo), % 2.8 to 3.3
0
Nickel (Ni), % 50 to 55
3.0 to 4.0
Niobium (Nb), % 4.7 to 5.5
0
Phosphorus (P), % 0 to 0.015
0 to 0.020
Silicon (Si), % 0 to 0.35
0 to 0.6
Sulfur (S), % 0 to 0.015
0 to 0.015
Titanium (Ti), % 0.6 to 1.2
0