MakeItFrom.com
Menu (ESC)

EN 2.4668 Nickel vs. C71640 Copper-nickel

EN 2.4668 nickel belongs to the nickel alloys classification, while C71640 copper-nickel belongs to the copper alloys. They have a modest 33% of their average alloy composition in common, which, by itself, doesn't mean much. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 2.4668 nickel and the bottom bar is C71640 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
140
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 75
52
Tensile Strength: Ultimate (UTS), MPa 1390
490 to 630
Tensile Strength: Yield (Proof), MPa 1160
190 to 460

Thermal Properties

Latent Heat of Fusion, J/g 310
240
Maximum Temperature: Mechanical, °C 980
260
Melting Completion (Liquidus), °C 1460
1180
Melting Onset (Solidus), °C 1410
1120
Specific Heat Capacity, J/kg-K 450
410
Thermal Conductivity, W/m-K 13
29
Thermal Expansion, µm/m-K 13
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 1.5
7.1

Otherwise Unclassified Properties

Base Metal Price, % relative 75
40
Density, g/cm3 8.3
8.9
Embodied Carbon, kg CO2/kg material 13
5.0
Embodied Energy, MJ/kg 190
73
Embodied Water, L/kg 250
280

Common Calculations

Resilience: Unit (Modulus of Resilience), kJ/m3 3490
130 to 750
Stiffness to Weight: Axial, points 13
8.7
Stiffness to Weight: Bending, points 23
20
Strength to Weight: Axial, points 46
15 to 20
Strength to Weight: Bending, points 33
16 to 18
Thermal Diffusivity, mm2/s 3.5
8.2
Thermal Shock Resistance, points 40
16 to 21

Alloy Composition

Aluminum (Al), % 0.3 to 0.7
0
Boron (B), % 0.0020 to 0.0060
0
Carbon (C), % 0.020 to 0.080
0
Chromium (Cr), % 17 to 21
0
Cobalt (Co), % 0 to 1.0
0
Copper (Cu), % 0 to 0.3
61.7 to 67.8
Iron (Fe), % 11.2 to 24.6
1.7 to 2.3
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 0.35
1.5 to 2.5
Molybdenum (Mo), % 2.8 to 3.3
0
Nickel (Ni), % 50 to 55
29 to 32
Niobium (Nb), % 4.7 to 5.5
0
Phosphorus (P), % 0 to 0.015
0
Silicon (Si), % 0 to 0.35
0
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0.6 to 1.2
0
Zinc (Zn), % 0
0 to 1.0
Residuals, % 0
0 to 0.5