MakeItFrom.com
Menu (ESC)

EN 2.4669 Nickel vs. AISI 301L Stainless Steel

EN 2.4669 nickel belongs to the nickel alloys classification, while AISI 301L stainless steel belongs to the iron alloys. They have a modest 30% of their average alloy composition in common, which, by itself, doesn't mean much. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 2.4669 nickel and the bottom bar is AISI 301L stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 16
22 to 50
Fatigue Strength, MPa 390
240 to 530
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
77
Shear Strength, MPa 680
440 to 660
Tensile Strength: Ultimate (UTS), MPa 1110
620 to 1040
Tensile Strength: Yield (Proof), MPa 720
250 to 790

Thermal Properties

Latent Heat of Fusion, J/g 310
280
Maximum Temperature: Mechanical, °C 960
890
Melting Completion (Liquidus), °C 1380
1430
Melting Onset (Solidus), °C 1330
1390
Specific Heat Capacity, J/kg-K 460
480
Thermal Conductivity, W/m-K 12
15
Thermal Expansion, µm/m-K 13
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 1.5
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 60
13
Density, g/cm3 8.4
7.8
Embodied Carbon, kg CO2/kg material 10
2.7
Embodied Energy, MJ/kg 150
39
Embodied Water, L/kg 260
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 160
210 to 300
Resilience: Unit (Modulus of Resilience), kJ/m3 1380
160 to 1580
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
25
Strength to Weight: Axial, points 37
22 to 37
Strength to Weight: Bending, points 28
21 to 29
Thermal Diffusivity, mm2/s 3.1
4.1
Thermal Shock Resistance, points 33
14 to 24

Alloy Composition

Aluminum (Al), % 0.4 to 1.0
0
Carbon (C), % 0 to 0.080
0 to 0.030
Chromium (Cr), % 14 to 17
16 to 18
Cobalt (Co), % 0 to 1.0
0
Copper (Cu), % 0 to 0.5
0
Iron (Fe), % 5.0 to 9.0
70.7 to 78
Manganese (Mn), % 0 to 1.0
0 to 2.0
Nickel (Ni), % 65.9 to 77.7
6.0 to 8.0
Niobium (Nb), % 0.7 to 1.2
0
Nitrogen (N), % 0
0 to 0.2
Phosphorus (P), % 0 to 0.020
0 to 0.045
Silicon (Si), % 0 to 0.5
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.030
Titanium (Ti), % 2.3 to 2.8
0