MakeItFrom.com
Menu (ESC)

EN 2.4669 Nickel vs. AISI 301LN Stainless Steel

EN 2.4669 nickel belongs to the nickel alloys classification, while AISI 301LN stainless steel belongs to the iron alloys. They have a modest 30% of their average alloy composition in common, which, by itself, doesn't mean much. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 2.4669 nickel and the bottom bar is AISI 301LN stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 16
23 to 51
Fatigue Strength, MPa 390
270 to 520
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
77
Shear Strength, MPa 680
450 to 670
Tensile Strength: Ultimate (UTS), MPa 1110
630 to 1060
Tensile Strength: Yield (Proof), MPa 720
270 to 770

Thermal Properties

Latent Heat of Fusion, J/g 310
280
Maximum Temperature: Mechanical, °C 960
890
Melting Completion (Liquidus), °C 1380
1430
Melting Onset (Solidus), °C 1330
1380
Specific Heat Capacity, J/kg-K 460
480
Thermal Conductivity, W/m-K 12
15
Thermal Expansion, µm/m-K 13
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 1.5
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 60
13
Density, g/cm3 8.4
7.8
Embodied Carbon, kg CO2/kg material 10
2.7
Embodied Energy, MJ/kg 150
39
Embodied Water, L/kg 260
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 160
220 to 290
Resilience: Unit (Modulus of Resilience), kJ/m3 1380
180 to 1520
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
25
Strength to Weight: Axial, points 37
22 to 38
Strength to Weight: Bending, points 28
21 to 30
Thermal Diffusivity, mm2/s 3.1
4.0
Thermal Shock Resistance, points 33
14 to 24

Alloy Composition

Aluminum (Al), % 0.4 to 1.0
0
Carbon (C), % 0 to 0.080
0 to 0.030
Chromium (Cr), % 14 to 17
16 to 18
Cobalt (Co), % 0 to 1.0
0
Copper (Cu), % 0 to 0.5
0
Iron (Fe), % 5.0 to 9.0
70.7 to 77.9
Manganese (Mn), % 0 to 1.0
0 to 2.0
Nickel (Ni), % 65.9 to 77.7
6.0 to 8.0
Niobium (Nb), % 0.7 to 1.2
0
Nitrogen (N), % 0
0.070 to 0.2
Phosphorus (P), % 0 to 0.020
0 to 0.045
Silicon (Si), % 0 to 0.5
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.030
Titanium (Ti), % 2.3 to 2.8
0