MakeItFrom.com
Menu (ESC)

EN 2.4669 Nickel vs. EN AC-42100 Aluminum

EN 2.4669 nickel belongs to the nickel alloys classification, while EN AC-42100 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 2.4669 nickel and the bottom bar is EN AC-42100 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
70
Elongation at Break, % 16
3.4 to 9.0
Fatigue Strength, MPa 390
76 to 82
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
26
Tensile Strength: Ultimate (UTS), MPa 1110
280 to 290
Tensile Strength: Yield (Proof), MPa 720
210 to 230

Thermal Properties

Latent Heat of Fusion, J/g 310
500
Maximum Temperature: Mechanical, °C 960
170
Melting Completion (Liquidus), °C 1380
610
Melting Onset (Solidus), °C 1330
600
Specific Heat Capacity, J/kg-K 460
910
Thermal Conductivity, W/m-K 12
150
Thermal Expansion, µm/m-K 13
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.4
41
Electrical Conductivity: Equal Weight (Specific), % IACS 1.5
140

Otherwise Unclassified Properties

Base Metal Price, % relative 60
9.5
Density, g/cm3 8.4
2.6
Embodied Carbon, kg CO2/kg material 10
8.0
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 260
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 160
9.1 to 23
Resilience: Unit (Modulus of Resilience), kJ/m3 1380
300 to 370
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 23
53
Strength to Weight: Axial, points 37
30 to 31
Strength to Weight: Bending, points 28
37 to 38
Thermal Diffusivity, mm2/s 3.1
66
Thermal Shock Resistance, points 33
13

Alloy Composition

Aluminum (Al), % 0.4 to 1.0
91.3 to 93.3
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 14 to 17
0
Cobalt (Co), % 0 to 1.0
0
Copper (Cu), % 0 to 0.5
0 to 0.050
Iron (Fe), % 5.0 to 9.0
0 to 0.19
Magnesium (Mg), % 0
0.25 to 0.45
Manganese (Mn), % 0 to 1.0
0 to 0.1
Nickel (Ni), % 65.9 to 77.7
0
Niobium (Nb), % 0.7 to 1.2
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.5
6.5 to 7.5
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 2.3 to 2.8
0 to 0.25
Zinc (Zn), % 0
0 to 0.070
Residuals, % 0
0 to 0.1