MakeItFrom.com
Menu (ESC)

EN 2.4680 Cast Nickel vs. 3203 Aluminum

EN 2.4680 cast nickel belongs to the nickel alloys classification, while 3203 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 2.4680 cast nickel and the bottom bar is 3203 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
70
Elongation at Break, % 9.1
4.5 to 29
Fatigue Strength, MPa 120
46 to 92
Poisson's Ratio 0.26
0.33
Shear Modulus, GPa 84
26
Tensile Strength: Ultimate (UTS), MPa 600
110 to 200
Tensile Strength: Yield (Proof), MPa 260
39 to 190

Thermal Properties

Latent Heat of Fusion, J/g 350
400
Maximum Temperature: Mechanical, °C 1050
180
Melting Completion (Liquidus), °C 1360
650
Melting Onset (Solidus), °C 1320
620
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 14
170
Thermal Expansion, µm/m-K 15
23

Otherwise Unclassified Properties

Base Metal Price, % relative 60
9.0
Density, g/cm3 8.0
2.8
Embodied Carbon, kg CO2/kg material 9.1
8.1
Embodied Energy, MJ/kg 130
150
Embodied Water, L/kg 350
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 45
8.0 to 25
Resilience: Unit (Modulus of Resilience), kJ/m3 160
11 to 250
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 21
11 to 20
Strength to Weight: Bending, points 20
19 to 28
Thermal Diffusivity, mm2/s 3.7
70
Thermal Shock Resistance, points 14
4.9 to 8.8

Alloy Composition

Aluminum (Al), % 0
96.9 to 99
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 48 to 52
0
Copper (Cu), % 0
0 to 0.050
Iron (Fe), % 0 to 1.0
0 to 0.7
Manganese (Mn), % 0 to 0.5
1.0 to 1.5
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 42.9 to 51
0
Niobium (Nb), % 1.0 to 1.8
0
Nitrogen (N), % 0 to 0.16
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 1.0
0 to 0.6
Sulfur (S), % 0 to 0.020
0
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15