MakeItFrom.com
Menu (ESC)

EN 2.4680 Cast Nickel vs. 6065 Aluminum

EN 2.4680 cast nickel belongs to the nickel alloys classification, while 6065 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 2.4680 cast nickel and the bottom bar is 6065 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
68
Elongation at Break, % 9.1
4.5 to 11
Fatigue Strength, MPa 120
96 to 110
Poisson's Ratio 0.26
0.33
Shear Modulus, GPa 84
26
Tensile Strength: Ultimate (UTS), MPa 600
310 to 400
Tensile Strength: Yield (Proof), MPa 260
270 to 380

Thermal Properties

Latent Heat of Fusion, J/g 350
400
Maximum Temperature: Mechanical, °C 1050
180
Melting Completion (Liquidus), °C 1360
640
Melting Onset (Solidus), °C 1320
590
Specific Heat Capacity, J/kg-K 480
890
Thermal Conductivity, W/m-K 14
170
Thermal Expansion, µm/m-K 15
23

Otherwise Unclassified Properties

Base Metal Price, % relative 60
11
Density, g/cm3 8.0
2.8
Embodied Carbon, kg CO2/kg material 9.1
8.4
Embodied Energy, MJ/kg 130
150
Embodied Water, L/kg 350
1200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 45
17 to 34
Resilience: Unit (Modulus of Resilience), kJ/m3 160
540 to 1040
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 25
49
Strength to Weight: Axial, points 21
31 to 40
Strength to Weight: Bending, points 20
36 to 43
Thermal Diffusivity, mm2/s 3.7
67
Thermal Shock Resistance, points 14
14 to 18

Alloy Composition

Aluminum (Al), % 0
94.4 to 98.2
Bismuth (Bi), % 0
0.5 to 1.5
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 48 to 52
0 to 0.15
Copper (Cu), % 0
0.15 to 0.4
Iron (Fe), % 0 to 1.0
0 to 0.7
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 0
0.8 to 1.2
Manganese (Mn), % 0 to 0.5
0 to 0.15
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 42.9 to 51
0
Niobium (Nb), % 1.0 to 1.8
0
Nitrogen (N), % 0 to 0.16
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 1.0
0.4 to 0.8
Sulfur (S), % 0 to 0.020
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.25
Zirconium (Zr), % 0
0 to 0.15
Residuals, % 0
0 to 0.15