MakeItFrom.com
Menu (ESC)

EN 2.4680 Cast Nickel vs. 6262A Aluminum

EN 2.4680 cast nickel belongs to the nickel alloys classification, while 6262A aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 2.4680 cast nickel and the bottom bar is 6262A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
68
Elongation at Break, % 9.1
4.5 to 11
Fatigue Strength, MPa 120
94 to 110
Poisson's Ratio 0.26
0.33
Shear Modulus, GPa 84
26
Tensile Strength: Ultimate (UTS), MPa 600
310 to 410
Tensile Strength: Yield (Proof), MPa 260
270 to 370

Thermal Properties

Latent Heat of Fusion, J/g 350
400
Maximum Temperature: Mechanical, °C 1050
160
Melting Completion (Liquidus), °C 1360
640
Melting Onset (Solidus), °C 1320
580
Specific Heat Capacity, J/kg-K 480
890
Thermal Conductivity, W/m-K 14
170
Thermal Expansion, µm/m-K 15
23

Otherwise Unclassified Properties

Base Metal Price, % relative 60
11
Density, g/cm3 8.0
2.8
Embodied Carbon, kg CO2/kg material 9.1
8.4
Embodied Energy, MJ/kg 130
150
Embodied Water, L/kg 350
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 45
17 to 34
Resilience: Unit (Modulus of Resilience), kJ/m3 160
540 to 1000
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 25
49
Strength to Weight: Axial, points 21
31 to 41
Strength to Weight: Bending, points 20
36 to 44
Thermal Diffusivity, mm2/s 3.7
67
Thermal Shock Resistance, points 14
14 to 18

Alloy Composition

Aluminum (Al), % 0
94.2 to 97.8
Bismuth (Bi), % 0
0.4 to 0.9
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 48 to 52
0.040 to 0.14
Copper (Cu), % 0
0.15 to 0.4
Iron (Fe), % 0 to 1.0
0 to 0.7
Magnesium (Mg), % 0
0.8 to 1.2
Manganese (Mn), % 0 to 0.5
0 to 0.15
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 42.9 to 51
0
Niobium (Nb), % 1.0 to 1.8
0
Nitrogen (N), % 0 to 0.16
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 1.0
0.4 to 0.8
Sulfur (S), % 0 to 0.020
0
Tin (Sn), % 0
0.4 to 1.0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15