MakeItFrom.com
Menu (ESC)

EN 2.4680 Cast Nickel vs. 7175 Aluminum

EN 2.4680 cast nickel belongs to the nickel alloys classification, while 7175 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 2.4680 cast nickel and the bottom bar is 7175 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
70
Elongation at Break, % 9.1
3.8 to 5.9
Fatigue Strength, MPa 120
150 to 180
Poisson's Ratio 0.26
0.32
Shear Modulus, GPa 84
26
Tensile Strength: Ultimate (UTS), MPa 600
520 to 570
Tensile Strength: Yield (Proof), MPa 260
430 to 490

Thermal Properties

Latent Heat of Fusion, J/g 350
380
Maximum Temperature: Mechanical, °C 1050
180
Melting Completion (Liquidus), °C 1360
640
Melting Onset (Solidus), °C 1320
480
Specific Heat Capacity, J/kg-K 480
870
Thermal Conductivity, W/m-K 14
140
Thermal Expansion, µm/m-K 15
23

Otherwise Unclassified Properties

Base Metal Price, % relative 60
10
Density, g/cm3 8.0
3.0
Embodied Carbon, kg CO2/kg material 9.1
8.2
Embodied Energy, MJ/kg 130
150
Embodied Water, L/kg 350
1130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 45
18 to 29
Resilience: Unit (Modulus of Resilience), kJ/m3 160
1310 to 1730
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 25
46
Strength to Weight: Axial, points 21
48 to 52
Strength to Weight: Bending, points 20
48 to 51
Thermal Diffusivity, mm2/s 3.7
53
Thermal Shock Resistance, points 14
23 to 25

Alloy Composition

Aluminum (Al), % 0
88 to 91.4
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 48 to 52
0.18 to 0.28
Copper (Cu), % 0
1.2 to 2.0
Iron (Fe), % 0 to 1.0
0 to 0.2
Magnesium (Mg), % 0
2.1 to 2.9
Manganese (Mn), % 0 to 0.5
0 to 0.1
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 42.9 to 51
0
Niobium (Nb), % 1.0 to 1.8
0
Nitrogen (N), % 0 to 0.16
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 1.0
0 to 0.15
Sulfur (S), % 0 to 0.020
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0
5.1 to 6.1
Residuals, % 0
0 to 0.15