MakeItFrom.com
Menu (ESC)

EN 2.4680 Cast Nickel vs. EN AC-21200 Aluminum

EN 2.4680 cast nickel belongs to the nickel alloys classification, while EN AC-21200 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 2.4680 cast nickel and the bottom bar is EN AC-21200 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
71
Elongation at Break, % 9.1
3.9 to 6.2
Fatigue Strength, MPa 120
110 to 130
Poisson's Ratio 0.26
0.33
Shear Modulus, GPa 84
27
Tensile Strength: Ultimate (UTS), MPa 600
410 to 440
Tensile Strength: Yield (Proof), MPa 260
270 to 360

Thermal Properties

Latent Heat of Fusion, J/g 350
390
Maximum Temperature: Mechanical, °C 1050
170
Melting Completion (Liquidus), °C 1360
660
Melting Onset (Solidus), °C 1320
550
Specific Heat Capacity, J/kg-K 480
880
Thermal Conductivity, W/m-K 14
130
Thermal Expansion, µm/m-K 15
23

Otherwise Unclassified Properties

Base Metal Price, % relative 60
10
Density, g/cm3 8.0
3.0
Embodied Carbon, kg CO2/kg material 9.1
8.0
Embodied Energy, MJ/kg 130
150
Embodied Water, L/kg 350
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 45
16 to 22
Resilience: Unit (Modulus of Resilience), kJ/m3 160
500 to 930
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 25
46
Strength to Weight: Axial, points 21
38 to 40
Strength to Weight: Bending, points 20
41 to 43
Thermal Diffusivity, mm2/s 3.7
49
Thermal Shock Resistance, points 14
18 to 19

Alloy Composition

Aluminum (Al), % 0
93.3 to 95.7
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 48 to 52
0
Copper (Cu), % 0
4.0 to 5.0
Iron (Fe), % 0 to 1.0
0 to 0.2
Lead (Pb), % 0
0 to 0.030
Magnesium (Mg), % 0
0.15 to 0.5
Manganese (Mn), % 0 to 0.5
0.2 to 0.5
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 42.9 to 51
0 to 0.050
Niobium (Nb), % 1.0 to 1.8
0
Nitrogen (N), % 0 to 0.16
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 1.0
0 to 0.1
Sulfur (S), % 0 to 0.020
0
Tin (Sn), % 0
0 to 0.030
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.1